D Programming Language Specification

Contents

This is the specification for the D Programming Language. For more information see dlang.org.

Contents

1 Introduction
2 Lexical

3 Grammar

4 Modules

5 Declarations
6 Types

7 Properties

8 Attributes

9 Pragmas

10 Expressions

11 Statements

12 Arrays

13 Associative Arrays

14 Structs and Unions

15 Classes

31

79

93

110

117

123

139

143

181

215

233

243

255

http://dlang.org

16 Interfaces

17 Enums

18 Type Qualifiers

19 Functions

20 Operator Overloading

21 Templates

22 Template Mixins

23 Contract Programming
24 Conditional Compilation
25 Traits

26 Error Handling

27 Unit Tests

28 Garbage Collection

29 Floating Point

30 D x86 Inline Assembler
31 Embedded Documentation
32 Interfacing to C

33 Interfacing to C++

34 Interfacing to Objective-C
35 Portability Guide

36 Named Character Entities

37 Memory Safety

CONTENTS

281

289

295

305

351

371

401

409

415

427

449

453

457

465

469

483

503

511

527

533

535

543

CONTENTS 3

38 Application Binary Interface 545

39 Vector Extensions 567

Chapter 1

Introduction

The D programming language is a general purpose systems programming language. To that end,
a D program is a collection of modules that can be compiled separately to native code that is
combined with libraries and compiled C code by a linker to create a native executable.

Phases of Compilation

The process of compiling is divided into multiple phases. Each phase has no dependence on subse-
quent phases. For example, the scanner is not perturbed by the semantic analyzer. This separation
of the passes makes language tools like syntax directed editors relatively easy to produce. It also is
possible to compress D source by storing it in ‘tokenized’ form.

1.

source character set
The source file is checked to see what character set it is, and the appropriate scanner is loaded.
ASCII and UTF formats are accepted.

. script line

If the first line starts with "#!", then that line is ignored.

lexical analysis

The source file is divided up into a sequence of tokens. Special tokens are replaced with other
tokens. SpecialTokenSequences are processed and removed.

syntax analysis

The sequence of tokens is parsed to form syntax trees.

. semantic analysis

The syntax trees are traversed to declare variables, load symbol tables, assign types, and in
general determine the meaning of the program.

optimization

Optimization is an optional pass that tries to rewrite the program in a semantically equivalent,
but faster executing, version.

CHAPTER 1. INTRODUCTION

7. code generation
Instructions are selected from the target architecture to implement the semantics of the pro-
gram. The typical result will be an object file, suitable for input to a linker.

Chapter 2

Lexical

The lexical analysis is independent of the syntax parsing and the semantic analysis. The lexical
analyzer splits the source text up into tokens. The lexical grammar describes the syntax of those
tokens. The grammar is designed to be suitable for high speed scanning and to make it easy to
write a correct scanner for it. It has a minimum of special case rules and there is only one phase of
translation. The tokens are readily recognizable by those familiar with C and C++.

Source Text

D source text can be in one of the following formats:

o ASCII

e UTF-8

UTF-16BE

UTF-16LE

UTF-32BE

UTF-32LE

UTF-8 is a superset of traditional 7-bit ASCII. One of the following UTF BOMs (Byte Order

Marks) can be present at the beginning of the source text:

7

8 CHAPTER 2. LEXICAL

UTF Byte Order Marks
Format BOM

UTF-8 EF BB BF
UTF-16BE FE FF
UTF-16LE FF FE
UTF-32BE 00 00 FE FF
UTF-32LE FF FE 00 00
ASCII no BOM

If the source file does not start with a BOM, then the first character must be less than or equal
to U+0000007F.

There are no digraphs or trigraphs in D.

The source text is decoded from its source representation into Unicode Characters. The Charac-
ters are further divided into: WhiteSpace, EndOfLine, Comments, Special TokenSequences, Tokens,
all followed by EndOfFile.

The source text is split into tokens using the maximal munch technique, i.e., the lexical analyzer
tries to make the longest token it can. For example >> is a right shift token, not two greater than
tokens. There are two exceptions to this rule:

e A .. embedded inside what looks like two floating point literals, as in 1. .2, is interpreted as
if the .. was separated by a space from the first integer.

e A 1.a is interpreted as the three tokens 1, ., and a, while 1. a is interpreted as the two
tokens 1. and a

Character Set

Character:
any Unicode character

End of File

EndOfFile:
physical end of the file
\u0000
\u001A

The source text is terminated by whichever comes first.

End of Line

EndOfLine:
\u000D
\u000A
\u000D \uO00A
\u2028
\u2029
EndOfFile

There is no backslash line splicing, nor are there any limits on the length of a line.

White Space

WhiteSpace:
Space
Space WhiteSpace

Space:
\u0020
\u0009
\u000B
\u000C

Comments

Comment:
BlockComment
LineComment
NestingBlockComment

BlockComment:
/* Characters */

LineComment:
// Characters EndOfLine

10 CHAPTER 2. LEXICAL

NestingBlockComment:
/+ NestingBlockCommentCharacters +/

NestingBlockCommentCharacters:
NestingBlockCommentCharacter
NestingBlockCommentCharacter NestingBlockCommentCharacters

NestingBlockCommentCharacter:
Character
NestingBlockComment

Characters:
Character
Character Characters

D has three kinds of comments:

1. Block comments can span multiple lines, but do not nest.
2. Line comments terminate at the end of the line.
3. Nesting block comments can span multiple lines and can nest.

The contents of strings and comments are not tokenized. Consequently, comment openings
occurring within a string do not begin a comment, and string delimiters within a comment do not
affect the recognition of comment closings and nested " /4" comment openings. With the exception
of "/+" occurring within a "/+" comment, comment openings within a comment are ignored.

a=/+//+/1; // parses as if ’a = 1;’
a=/+ "+/"+/,1"; // parses as if ’a = " +/ 1";’
/+ /* +/ %/ 3; // parses as if ’a = */ 3;’

a

Comments cannot be used as token concatenators, for example, abc/**/def is two tokens, abc
and def, not one abcdef token.

Tokens

Token:

11

12 CHAPTER 2. LEXICAL

Identifier -= 1= =

Stringliteral - 1<> ==

CharacterLiteral + 1<>= *

IntegerLiteral += 1< *=

FloatLiteral ++ I<= Y

Keyword < > Y=

/ <= 1>= ~

/= << (~=
<<=) -
<> [~ee
<>=] ~

& > { ~=

&= >= } @

&& >>= ? =>

I >>>= , #

=| >> ;

|l >>> .

-] $

Identifiers
Identifier:
IdentifierStart

IdentifierStart IdenttfierChars

IdentifierChars:
IdentifierChar
IdentifierChar IdentifierChars

IdentifierStart:

Letter
Universaldlpha

13

IdentifierChar:
IdentifierStart
0
NonZeroDigait

Identifiers start with a letter, _, or universal alpha, and are followed by any number of letters,
_, digits, or universal alphas. Universal alphas are as defined in ISO/IEC 9899:1999(E) Appendix
D. (This is the C99 Standard.) Identifiers can be arbitrarily long, and are case sensitive. Identifiers
starting with __ (two underscores) are reserved.

String Literals

StringlLiteral:
WysiwygString
AlternatelysiwygString
DoublefuotedString

HexString
DelimitedString
TokenString

WysiwygString:
r" WysiwygCharacters " StringPostfizopt

AlternatelysiwygString:
¢ WysiwygCharacters ¢ StringPostfizpy

WysiwygCharacters:
WysiwygCharacter
WysiwygCharacter WysiwygCharacters

WysiwygCharacter:

14 CHAPTER 2. LEXICAL

Character
EndOfLine

DoubleQuotedString:
" DoublefQuotedCharacters " StringPostfiTpt

DoubleQuotedCharacters:
DoublefuotedCharacter
DoublefuotedCharacter DoublefuotedCharacters

DoubleQuotedCharacter:
Character
EscapeSequence
EndOfLine

EscapeSequence:
\)
\ll
\7?
\\
\0
\a
\b
\f
\n
\r
\t
\v
\x HexDigit HezDigit
\ OctalDigit
\ OctalDigit OctalDigit
\ OctalDigit OctalDigit OctalDigit
\u HexDigit HexDigit HexzDigit HexDigit
\U HezDigit HexDigit HexDigit HexDigit HexDigit HexDigit HexDigit HexDigit
\ NamedCharacterEntity

15

HexString:
x" HexStringChars " StringPostfiz pt

HexStringChars:
HexStringChar
HexStringChar HexStringChars

HexStringChar:
HexDigit
WhiteSpace
EndOfLine

StringPostfix:
c
W
d

DelimitedString:
q" Delimiter WysiwygCharacters MatchingDelimiter "

TokenString:
q{ Tokens }

A string literal is either a double quoted string, a wysiwyg quoted string, a delimited string, a
token string, or a hex string.
In all string literal forms, an EndOfLine is regarded as a single \n character.

Wysiwyg Strings

Wysiwyg ("what you see is what you get") quoted strings are enclosed by r" and ". All characters
between the r" and " are part of the string. There are no escape sequences inside r" ":

16 CHAPTER 2. LEXICAL

r"hello"
r"c:\root\foo.exe"
r"ab\n" // string is 4 characters,

// ;a;’ ’b}, ;\;’ ’n’

An alternate form of wysiwyg strings are enclosed by backquotes, the ‘ character. The * character
is not available on some keyboards and the font rendering of it is sometimes indistinguishable from
the regular ’ character. Since, however, the is rarely used, it is useful to delineate strings with "
in them.

‘hello®

‘c:\root\foo.exe

‘The "lazy" dog‘
‘a"b\n‘_//ustring is 5, characters,

J J rnH) 2)) 2 2
vuuuuoun//u’a’ 0 ,u’b?, 0\, 0

Double Quoted Strings

nn

Double quoted strings are enclosed by "". Escape sequences can be embedded into them with the

typical \ notation.

"hello"

"c:\\root\\foo.exe"

"ab\n" // string is 3 characters,
// ’a’, ’b’, and a linefeed

"ab

" // string is 3 characters,

// ’a’, ’b’, and a linefeed

Hex Strings

Hex strings allow string literals to be created using hex data. The hex data need not form valid
UTF characters.

x"0OA" // same as "\xO0A"
x"00_FBCD,,32FD ,0A" // same as
// "\x00\xFB\xCD\x32\xFD\x0A"

Whitespace and newlines are ignored, so the hex data can be easily formatted. The number of
hex characters must be a multiple of 2.
Adjacent strings are concatenated with the operator:

17

"hello" ~ "world" ~ "\n" // forms the string
// Yh? e’ %17 .71 %0,
// ’w?’,’0’,’r’,’1°,°d’,linefeed

The following are all equivalent:

"ab" ~ "c"
r'"ab" T r"c"
r"a" 7 "bc"

"a" T o "p" T "

The optional StringPostfix character gives a specific type to the string, rather than it being
inferred from the context. This is useful when the type cannot be unambiguously inferred, such as
when overloading based on string type. The types corresponding to the postfix characters are:

String Literal Postfix Characters
Postfix Type Aka

c immutable(char) [] string
w immutable(wchar) [] wstring
d immutable(dchar) [] dstring

"hello"c // string
"hello"w // wstring
"hello"d // dstring

The string literals are assembled as UTF-8 char arrays, and the postfix is applied to convert to
wchar or dchar as necessary as a final step.

String literals are read only. Writes to string literals cannot always be detected, but cause
undefined behavior.

Delimited Strings

Delimited strings use various forms of delimiters. The delimiter, whether a character or identifer,
must immediately follow the " without any intervening whitespace. The terminating delimiter must
immediately precede the closing " without any intervening whitespace. A nesting delimiter nests,
and is one of the following characters:

18 CHAPTER 2. LEXICAL

Nesting Delimiters

Delimiter Matching Delimiter

[]
()
< >
{ }

q" (foo(xxx))" // "foo(xxx)"
qll [foo{] n // llfoo{”

If the delimiter is an identifier, the identifier must be immediately followed by a newline, and
the matching delimiter is the same identifier starting at the beginning of the line:

writeln(q"EOS
This

isgya multi-line
heredoc string
EOS"

)3

The newline following the opening identifier is not part of the string, but the last newline before
the closing identifier is part of the string. The closing identifier must be placed on its own line at
the leftmost column.

Otherwise, the matching delimiter is the same as the delimiter character:

qll/foo]/ll // HfOOJ n
// q"/abc/def/" // error

Token Strings

Token strings open with the characters q{ and close with the token }. In between must be valid D
tokens. The { and } tokens nest. The string is formed of all the characters between the opening
and closing of the token string, including comments.

gq{foo} // "foo"

ql/*r+/ } VARVAS LA

q{ foo(qfhello}); } // " foo(gf{hello}); "
q{ __TIME__ } // " __TIME__ "

// i.e. it is not replaced with the time
// g{ __EOF__ } // error
// __EOF__ is not a token, it’s end of file

19

Escape Sequences

The following table explains the meaning of the escape sequences listed in EscapeSequence:

Escape Sequences

Sequence Meaning

\’ Literal single-quote: ’

\" Literal double-quote: "

\7? Literal question mark: ?

\\ Literal backslash: \

\0 Binary zero (NUL, U+0000).

\a BEL (alarm) character (U+0007).

\b Backspace (U+0008).

\f Form feed (FF) (U+000C).

\n End-of-line (U4000A).

\r Carriage return (U+000D).

\t Horizontal tab (U-+0009).

\v Vertical tab (U+000B).

\xnn Byte value in hexadecimal, where nn is specified as two hexadecimal digits.For example: \xFF :
\n\nn\nnn Byte value in octal.For example: \101 represents the character with the value 65 (?A”). Analog
\unnnn Unicode character U+nnnn, where nnnn are four hexadecimal digits.For example, \u042F repre
\Unnnnnnnn Unicode character U+nnnnnnnn, where nnnnnnnn are 8 hexadecimal digits.For example, \UOO!
\name Named character entity from the HTML5 specification. See NamedCharacterEntity for more de

Character Literals

CharacterLiteral:
> SinglefuotedCharacter ’

SingleQuotedCharacter:
Character
EscapeSequence

Character literals are a single character or escape sequence enclosed by single quotes, ’,’.

Integer Literals

IntegerLiteral:

20

Integer
Integer IntegerSuffiz

Integer:
DecimalInteger
BinaryInteger
Hexadecimallnteger

IntegerSuffix:
L
u
U
Lu
LU
uL.
UL

Decimallnteger:
0
NonZeroDigit
NonZeroDigit DecimalDigitsUS

BinaryInteger:
BinPrefixz BinaryDigitsUS

BinPrefix:
Ob
OB

Hexadecimallnteger:
HexPrefix HexDigitsNoSingleUS

NonZeroDigit:

CHAPTER 2. LEXICAL

© 00 NO O W N -

DecimalDigits:
DecimalDigit
DecimalDigit DecimalDigits

DecimalDigitsUS:
DecimalDigitUS

DecimalDigitUS DecimalDigitsUS

DecimalDigitsNoSingleUS:
DecimalDigit
DecimalDigit DecimalDigitsUS
DecimalDigitsUS DecimalDigit

DecimalDigitsNoStartingUS:
DecimalDigit
DecimalDigit DecimalDigitsUS

DecimalDigit:
0
NonZeroDigit

DecimalDigitUS:
DecimalDigit

21

22

BinaryDigitsUS:
BinaryDigttUS
BinaryDigitUS BinaryDigitsUS

BinaryDigit:
0
1

BinaryDigitUS:
BinaryDigit

OctalDigit:
0

~NOo Ok WwN e

HexDigits:
HexDigtt
HexzDigit HexzDigits

HexDigitsUS:
HexDigitUS
HexDig1tUS HexDigitsUS

HexDigitsNoSingleUS:
HexzDigit

CHAPTER 2. LEXICAL

23

HezDigit HexDigitsUS
HexDig1tsUS HexDigit

HexDigitsNoStartingUS:
HexDigit
HexzDigit HexDigitsUS

HexDigit:
DecimalDigit
HexLetter

HexDigitUS:
HezDigit

HexLetter:

)

Mmoo QW= Ho0o o T

Integers can be specified in decimal, binary, or hexadecimal.

Decimal integers are a sequence of decimal digits.

Binary integers are a sequence of binary digits preceded by a ‘Ob’ or ‘0B’.

C-style octal integer notation was deemed too easy to mix up with decimal notation; it is only
fully supported in string literals. D still supports octal integer literals interpreted at compile time
through the std.conv.octal template, as in octal!167.

24 CHAPTER 2. LEXICAL

Hexadecimal integers are a sequence of hexadecimal digits preceded by a ‘0x’ or ‘0X’.
Integers can have embedded ¢’ characters, which are ignored. The embedded ¢’ are useful for
formatting long literals, such as using them as a thousands separator:

123_456 // 123456
1.2.3_.4.5_6_ // 123456

Integers can be immediately followed by one ‘L’ or one of ‘u’ or ‘U’ or both. Note that there is
no ‘I’ suffix.
The type of the integer is resolved as follows:

Decimal Literal Types

Literal Type

Usual decimal notation

0 .. 2_147_483_647 int
2_147_483_648 .. 9_223_372_036_854_775_807 long

Ezxplicit suffizes

OL .. 9_.223_372_036_854_775_807L long

OU .. 4_294_967_295U0 uint

4_294 _967_296U .. 18_446_744_073_709_551_615U ulong
OUL .. 18_446_744_073_709_551_615UL ulong
Hezadecimal notation

0x0 .. Ox7FFF_FFFF int
0x8000_0000 .. OxFFFF_FFFF uint
0x1_0000_0000 .. Ox7FFF_FFFF_FFFF_FFFF long
0x8000_0000_0000_0000 .. OxFFFF_FFFF_FFFF_FFFF ulong
Hezadecimal notation with explicit suffizes

OxOL .. Ox7FFF_FFFF_FFFF_FFFFL long
0x8000_0000_0000_0000L .. OxFFFF_FFFF_FFFF_FFFFL ulong
0x0U .. OxFFFF_FFFFU uint
0x1_0000_0000U .. OxFFFF_FFFF_FFFF_FFFFU ulong
0xOUL .. OxFFFF_FFFF_FFFF_FFFFUL ulong

Floating Point Literals

FloatLiteral:
Float
Float Suffiz
Integer ImaginarySuffiz

Integer FloatSuffixz ImaginarySuffiz
Integer RealSuffixz ImaginarySuffiz

Float:
DecimalFloat
HexFloat

DecimalFloat:
LeadingDecimal
LeadingDecimal . DecimalDigits
DecimalDigits . DecimalDigitsNoStartingUS DecimalExponent
. Decimallnteger
. DectmallInteger DecimalExzponent
LeadingDecimal DecimalExponent

DecimalExponent
DecimalExponentStart DecimalDigitsNoSingleUS

DecimalExponentStart
e
E
e+
E+

HexFloat:
HexPrefix HexDigitsNoSingleUS . HexDigitsNoStartingUS HexExponent

HezPrefixz . HexDigitsNoStartingUS HexExponent
HexPrefix HexDigitsNoSingleUS HexExponent

HexPrefix:
(0)'4
0X

25

26

HexExponent:
HexExponentStart DecimalDigitsNoSingleUS

HexExponentStart:

p
P
p+
P+
p_
P-

Suffix:
FloatSuffiz
RealSuffiz
ImaginarySuffiz
FloatSuffiz ImaginarySuffiz
RealSuffixz ImaginarySuffiz

FloatSuffix:
f
F

RealSuffix:
L

ImaginarySuffix:
i

LeadingDecimal:
Decimalinteger

CHAPTER 2. LEXICAL

27
0 DecimalDigitsNoSinglelUS

Floats can be in decimal or hexadecimal format.

Hexadecimal floats are preceded by a 0x or 0X and the exponent is a p or P followed by a
decimal number serving as the exponent of 2.

Floating literals can have embedded ° ’ characters, which are ignored. The embedded ' are
useful for formatting long literals to make them more readable, such as using them as a thousands
separator:

123_456.567_8 // 123456.5678
1.2.3_4.5_6_.5_6_7_8 // 123456.5678
1.2.3_4.5_6_.5e-6_ // 123456.5e-6

Floating literals with no suffix are of type double. Floats can be followed by one f, F, or L
suffix. The f or F suffix means it is a float, and L means it is a real.

If a floating literal is followed by 1i, then it is an ireal (imaginary) type.

Examples:

0x1.FFFFFFFFFFFFFp1023 // double.max

0x1p-52 // double.epsilon
1.175494351e-38F // float.min
6.31 // idouble 6.3
6.3f1 // ifloat 6.3
6.3L1i // ireal 6.3

It is an error if the literal exceeds the range of the type. It is not an error if the literal is rounded
to fit into the significant digits of the type.
If a floating literal has a . and a type suffix, at least one digit must be in-between:

1f; // 0K

1.f; // forbidden
1d; // 0K

1.d; // forbidden
1.; // OK, int

Complex literals are not tokens, but are assembled from real and imaginary expressions during
semantic analysis:

4.5 + 6.2i // complex number (phased out)

Keywords are reserved identifiers.
See Also: Globally Defined Symbols.

Keyword:

abstract
alias
align
asm
assert
auto

body
bool
break
byte

case
cast
catch
cdouble
cent
cfloat
char
class
const
continue
creal

dchar

debug
default
delegate
deletev
(deprecated)
deprecated
do

double

else
enum
export
extern

false
final
finally
float
for
foreach

foreach_reverse/

function
goto

idouble
if

ifloat
immutable
import

in

inout

int
interface
invariant
ireal

is

lazy
long

macro (unused)

mixin
module

new
nothrow
null

out
override

package
pragma
private
protected
public
pure

real
ref
return

scope
shared

CHAPTER 2. LEXICAL

short

static
struct

super

switch
synchronized

template
this

throw

true

try
typedef /
(deprecated)
typeid
typeof

ubyte
ucent
uint
ulong
union
unittest
ushort

version
void
volatile/
(deprecated)

wchar

while __FILE_FULL_PATH__v __PRETTY_FUNCTION__/ __traits

with & & __vector
__MODULE__ __parameters
__LINE__

__FILE__ __FUNCTION__ __gshared

Globally Defined Symbols

These are defined in object .d, which is automatically imported by the default implementation.

Symbols:

string/ (alias to immutable(wchar)[]) ptrdiff_t
& (alias to immutable (chbst)big ./

wstring v/ (alias to immutable (daize) ftl)

Special Tokens

These tokens are replaced with other tokens according to the following table:

Special Tokens

Special Token Replaced with

__DATE__ string literal of the date of compilation "mmm dd yyyy"

__EOF__ sets the scanner to the end of the file

__TIME__ string literal of the time of compilation "hh:mm:ss"

__TIMESTAMP__ string literal of the date and time of compilation "www mmm dd hh:mm:ss
yyyy"

__VENDOR__ Compiler vendor string, such as "Digital Mars D"

__VERSION__ Compiler version as an integer, such as 2001

Special Token Sequences

SpecialTokenSequence:

29

30 CHAPTER 2. LEXICAL

line IntegerLiteral EndOfLine
line IntegerLiteral Filespec EndOfLine

Filespec:
" Characters "

Special token sequences are processed by the lexical analyzer, may appear between any other
tokens, and do not affect the syntax parsing.

There is currently only one special token sequence, #1line.

This sets the source line number to IntegerLiteral, and optionally the source file name to Filespec,
beginning with the next line of source text. The source file and line number is used for printing error
messages and for mapping generated code back to the source for the symbolic debugging output.

For example:

int #line 6 "foo\bar"
x; // this is now line 6 of file foo\bar

Note that the backslash character is not treated specially inside Filespec strings.

Chapter 3

Grammar

Lexical Syntax

Refer to the page for lexical syntax.

Type

Type:
TypeCtorsopt BasicType BasicTypelqpt

TypeCtors:
TypeCtor
TypeCtor TypeCtors

TypeCtor:
const
immutable
inout
shared

BasicType:
BasicTypeX
. IdentifierList
IdentifierList

Typeof

31

32 CHAPTER 3. GRAMMAR

Typeof . IdentifierList
TypeCtor (Type)
TypeVector

BasicTypeX:
bool
byte
ubyte
short
ushort
int
uint
long
ulong
char
wchar
dchar
float
double
real
ifloat
idouble
ireal
cfloat
cdouble
creal
void

BasicTypeZ2:
BasicTypel2X BasicTypeZpt

BasicType2X:
*

L]

[4ssignExpression]

[4ssignExpression .. AssignEzpression]
[Type]

delegate Parameters MemberFunctiondtiributespt
function Parameters Functiondtiributespt

IdentifierList:
Identifier
Identifier . IdentifierlList
Templatelnstance

Templatelnstance . IdentifierList
Identifier [AssignExpression]. IdentifierList

Typeof:
typeof (Exzpression)
typeof (return)

TypeVector:
__vector (Type)

Expression

Expression:
CommaEzpression

CommaExpression:
AssignExpression
AssignExpression , CommaExrpression

AssignExpression:

ConditionalExpression

ConditionalEzpresstion = AssignExpression
ConditionalEzpression += AssignExpression
ConditionalEzpresstion -= AssignExrpression
ConditionalEzpression *= AssignExpression
ConditionalExpression /= AssignExpression
ConditionalExzpression %= AssignEzpression

33

34 CHAPTER 3.

ConditionalEzpression &= AssignExpression

ConditionalEzpression =| AssignExpression
ConditionalEzpression ~= AssignExpression
ConditionalExpression "= AssignExpression

ConditionalEzpression <<= AssignErpression
ConditionalExzpression >>= AssignExpression
ConditionalExpression >>>= AssignExpression
ConditionalExzpression ~~= AssignExpression

ConditionalExpression:
OrOrEzpression
OrOrExpression 7 Ezpression : ConditionalExpression

OrOrExpression:
AndAndEzpression
OrOrEzpression || AndAndExpression

AndAndExpression:
OrEzpression
AndAndExpression && OrExpression
CmpExpression
AndAndEzpression && CmpExpression

OrExpression:
XorEzpression
OrEzpression | XorExpression

XorExpression:
AndEzpression
XorEzpression ~ AndExzpression

AndExpression:
ShiftEzpression
AndEzpression & ShiftExpression

GRAMMAR

ShiftExpression

CmpExpression:
ShiftExpression
EqualEzpression
IdentityExpression
RelExpression
InExpression
EqualExpression:
ShiftExpression == ShiftExpression
ShiftExzpression ‘= ShiftExpression
IdentityExpression:
ShiftExzpression is ShiftExpression
ShiftExzpression 'is ShiftExzpression
RelExpression:
ShiftExpression < ShiftExpression
ShiftExpression <= ShiftEzpression
ShiftExpression > ShiftExpression
ShiftExpression >= ShiftExzpression
ShiftExpression !<>= ShiftEzpression
ShiftExzpression '<> ShiftEzpression
ShiftExpression <> ShiftEzpression
ShiftEzpression <>= ShiftErpression
ShiftExpression !> ShiftEzpression
ShiftExpression !>= ShiftExpression
ShiftExpression !'< ShiftEzpression
ShiftExpression !<= ShiftExzpression
InExpression:
ShiftExzpression in ShiftExpression
ShiftExpression 'in ShiftErpression
ShiftExpression:
AddEzpression

<< AddEzpression

35

36 CHAPTER 3. GRAMMAR

ShiftExpression >> AddEzpression
ShiftExpression >>> AddEzpression

AddExpression:
MulEzpression
AddEzpression + MulExpression
AddEzpression - MulExzpression
CatExpression

CatExpression:
AddEzpression = MulExzpression

MulExpression:
UnaryEzpression
MulEzpression * UnaryEzpression
MulEzpression / UnaryEzpression
MulEzpression % UnaryEzpression

UnaryExpression:
& UnaryEzpression
++ UnaryExzpression
-- UnaryExzpression
* UnaryEzpression
- UnaryExzpression
+ UnaryEzpression
! UnaryEzpression
ComplementExpression
(Type) . Identifier
(Type) . Templatelnstance
DeleteExpression
CastExpression
PowEzpression

ComplementExpression:
~ UnaryEzpression

37

NewExpression:
new Allocatordrguments.p; Type
NewEzpressionWithArgs

NewExpressionWithArgs:
new Allocatordrguments.,, Type [AssignExpression]
new Allocatordrguments., Type (ArgumentList .)
NewAnonClassExpression

AllocatorArguments:
(ArgumentList qp)

ArgumentList:
AssignExpression
AssignExpression ,
AssignExpression , ArqumentLlist

NewAnonClassExpression:
new Allocatordrguments pt class Classdrguments pt SuperClassqpt Interfacespt AdggregateBody

ClassArguments:
(ArgumentList qp)

DeleteEkxpression:
delete UnaryErpression

CastExpression:
cast (Type) UnaryEzpression
cast (TypeCtors.p) UnaryExpression

PowExpression:
PostfizErpression

38 CHAPTER 3.

PostfixzExzpression ~~ UnaryExpression

PostfixExpression:
PrimaryEzpression
PostfizExpression . Identifier
PostfizErpression . Templatelnstance
PostfizExpression . NewExpression
PostfizErpression ++
PostfizExzpression --
PostfizExpression (ArgumentList .p;)
TypeCtors,pt BasicType (ArgumentList.p;)
IndexEzpression
SliceExzpression

IndexExpression:
PostfizErpression [Argumentlist]

SliceExpression:
PostfizExpression [
PostfizEzpression [

Slice:
AdssignExpression
dssignExpression , Slice
AssignExpression .. AssignExzpression
dssignExpression .. AssignExpression , Slice

]
Slice ,opt 1

PrimaryExpression:

Identifier
Identifier

Templatelnstance
Templatelnstance

this

super

null

true

false

GRAMMAR

$

IntegerLiteral
FloatLiteral
CharacterLiteral
Stringliterals
Arrayliteral
AdssocArrayliteral
Functionliteral
AssertExpression
MizinEzpression
ImportEzpression
VewEzpressionkWithdrgs
BasicTypeX . Identifier
Typeof
TypeidExpression
IsExpression

(Ezpression)
TraitsExpression
SpecialKeyword

StringlLiterals:
Stringliteral
Stringliterals Stringliteral

ArrayLiteral:
[ArgumentList op]

AssocArrayLiteral:
[KeyValuePairs]

KeyValuePairs:
KeyValuePair
KeyValuePair , KeyValuePatirs

KeyValuePair:

39

40 CHAPTER 3.

KeyEzpression : ValueEzpression

KeyExpression:
AssignExpression

ValueExpression:
AssignExpression

FunctionLiteral:
function Typeopt Parameterdtiributes opt FunctionlLiteralBody
delegate Type,pt ParameterMemberAtiributes ,py FunctionlLiteralBody
ParameterMemberAttributes FunctionliteralBody
FunctionliteralBody
Lambda

ParameterAttributes:
Parameters Functiondtiributespt

ParameterMemberAttributes:
Parameters MemberFunctiondtiributes p

FunctionLiteralBody:
BlockStatement
FunctionContracts pt BodyStatement

Lambda:
function Type,pt Parameterdtiributes => AssignEzpression
delegate Typeopy ParameterMemberdtiributes => AssignEzpression
ParameterMemberAttributes => AssignExpression
Identifier => AssignExpression

AssertExpression:

GRAMMAR

assert (AssignExzpression ,opt)

assert (AssignEzpression , AssignExzpression ,opt)

MixinExpression:

mixin (AssignEzpression)

ImportExpression:

import (AssignEzpression)

TypeidExpression:
typeid (Type)
typeid (Expression)

IsExpression:
is (Type)
is
is
is
is
is (Type Identifier)

Type Identifier

Type Identifier ==

Type Identifier

Type Identifier ==

is
is
is
is

N AN AN AN AN AN AN A

TypeSpecialization:
Type
struct
union
class
interface
enum
function
delegate
super

Type : TypeSpecialization)
Type == TypeSpecialization)
Type : TypeSpecialization , TemplateParameterList)
Type == TypeSpecialization , TemplateParameterList)

TypeSpecialization)
TypeSpecialization)
TypeSpecialization , TemplateParameterList)
TypeSpecialization , TemplateParameterList)

41

42

const
immutable
inout

shared
return
__parameters

TraitsExpression:

__traits (TraitsKeyword , TraitsArguments)

TraitsKeyword:

isAbstractClass
isArithmetic
isAssociativeArray
isFinalClass

isPOD

isNested
isFloating
isIntegral
isScalar
isStaticArray
isUnsigned
isVirtualFunction
isVirtualMethod
isAbstractFunction
isFinalFunction
isStaticFunction
isOverrideFunction
isTemplate

isRef

isOut

isLazy

hasMember
identifier
getAliasThis
getAttributes
getFunctionAttributes
getFunctionVariadicStyle

CHAPTER 3. GRAMMAR

getLinkage
getMember
getOverloads
getParameterStorageClasses
getPointerBitmap
getProtection
getVirtualFunctions
getVirtualMethods
getUnitTests

parent
classInstanceSize
getVirtuallndex
allMembers
derivedMembers
isSame

compiles

TraitsArguments:
TraitsArqument
TraitsAdrqument , TraitsArguments

TraitsArgument:
AssignExpression

Type

SpecialKeyword:
__FILE__
__FILE_FULL_PATH__
__MODULE__
__LINE__
__FUNCTION__

_PRETTY_FUNCTION_

Statement

Statement:

44

NonEmptyStatement
ScopeBlockStatement

NoScopeNonEmptyStatement:
NonEmptyStatement
BlockStatement

NoScopeStatement:

NonEmptyStatement
BlockStatement

NonEmptyOrScopeBlockStatement:
NonEmptyStatement
ScopeBlockStatement

NonEmptyStatement:
NonEmptyStatementNoCaseNoDefault
CaseStatement
CaseRangeStatement
DefaultStatement

NonEmptyStatementNoCaseNoDefault:
LabeledStatement
EzpressionStatement
DeclarationStatement
IfStatement
WhileStatement
DoStatement
ForStatement
ForeachStatement
SwitchStatement
FinalSwitchStatement
ContinueStatement

CHAPTER 3. GRAMMAR

BreakStatement
ReturnStatement
GotoStatement
WithStatement
SynchronizedStatement
TryStatement
ScopeGuardStatement
ThrowStatement
AsmStatement
PragmaStatement
MizinStatement
ForeachRangeStatement
ConditionalStatement
StaticAssert
TemplateMizin
ImportDeclaration

ScopeStatement:
NonEmptyStatement
BlockStatement

ScopeBlockStatement:
BlockStatement

LabeledStatement:
Identifier
Identifier : NoScopeStatement
Identifier : Statement

BlockStatement:
{3
{ StatementList %}

StatementList:
Statement

46 CHAPTER 3.

Statement StatementList

ExpressionStatement:
Ezpression ;

DeclarationStatement:
StorageClassesp, Declaration

IfStatement:
if (IfCondition) ThenStatement
if (IfCondition) ThenStatement else ElseStatement

IfCondition:
Ezpression
auto Identifier = Expression
TypeCtors Identifier = Expression
TypeCtorsopy BasicType Declarator = Expression

ThenStatement:
ScopeStatement

ElseStatement:
ScopeStatement

WhileStatement:
while (Exzpression) ScopeStatement

DoStatement:
do ScopeStatement while (Ezpression) ;

ForStatement:
for (Initialize Testoy ; Increment.p) ScopeStatement

GRAMMAR

Initialize:

NoScopeNonEmptyStatement

Test:
Ezpression

Increment:
Ezpression

ForeachStatement:
Foreach (ForeachTypelist ; Foreachdggregate) NoScopeNonEmptyStatement

Foreach:
foreach
foreach_reverse

ForeachTypeList:
ForeachType
ForeachType , ForeachTypelList

ForeachType:
ForeachTypedttributes p BasicType Declarator
ForeachTypedttributes pt Identifier

ForeachTypeAttributes
ForeachTypeAttribute
ForeachTypedttribute ForeachTypedttributespt

ForeachTypeAttribute:

47

48 CHAPTER 3. GRAMMAR

ref
TypeCtor

ForeachAggregate:
Ezpression

ForeachRangeStatement:
Foreach (ForeachType ; LwrEzpression .. UprExpression) ScopeStatement

LwrExpression:
Ezpression

UprExpression:
Ezpression

SwitchStatement:
switch (Expression) ScopeStatement

CaseStatement:
case Argumentlist : ScopeStatementlist

CaseRangeStatement:
case FirstExp : .. case LastExp : ScopeStatementList

FirstExp:
AssignExpression

LastExp:
AssignExpression

DefaultStatement:
default : ScopeStatementList

ScopeStatementList:
StatementLlistNoCaseNoDefault

StatementListNoCaseNoDefault:
StatementNoCaseNoDefault
StatementNoCaseNoDefault StatementlistNoCaseNoDefault

StatementNoCaseNoDefault:

NonEmptyStatementNoCaseNoDefault
ScopeBlockStatement

FinalSwitchStatement:
final switch (Ezpression) ScopeStatement

ContinueStatement:
continue Identifierqopt ;

BreakStatement:
break Identifieropt ;

ReturnStatement:
return ETpressionopt ;

GotoStatement:
goto Identifier ;
goto default ;
goto case ;
goto case Ezpression ;

49

50 CHAPTER 3.

WithStatement:
with (Ezpression) ScopeStatement
with (Symbol) ScopeStatement
with (TemplatelInstance) ScopeStatement

SynchronizedStatement:
synchronized ScopeStatement
synchronized (Ezpression) ScopeStatement

TryStatement:
try ScopeStatement Catches
try ScopeStatement Catches FinallyStatement
try ScopeStatement FinallyStatement

Catches:
Catch
Catch Catches

Catch:
catch (CatchParameter) NoScopeNonEmptyStatement

CatchParameter:
BasicType Identifier

FinallyStatement:
finally NoScopeNonEmptyStatement

ThrowStatement:
throw Ezpression ;

ScopeGuardStatement:
scope(exit) NonEmptyOrScopeBlockStatement

GRAMMAR

scope(success) NonEmptyOrScopeBlockStatement
scope(failure) NonEmptyOrScopeBlockStatement

AsmStatement:
asm Functiondttributesp; { AsmInstructionlistp; }

AsmInstructionList:
AsmInstruction ;
AsmInstruction ; AsmInstructionlList

PragmaStatement:
Pragma NoScopeStatement

MixinStatement:
mixin (AssignEzpression) ;

Tasm

AsmInstruction:
Identifier : AsmInstruction
align IntegerExpression
even
naked
db Operands
ds Operands
di Operands
dl Operands
df Operands
dd Operands
de Operands
db Stringliteral
ds Stringliteral
di Stringliteral
dl Stringliteral
dw Stringliteral
dq Stringliteral

52 CHAPTER 3. GRAMMAR

Opcode
Opcode Operands

Operands:
Operand
Operand , UOperands

IntegerExpression:
IntegerLiteral
Identifier

Register:
AL AH AX EAX
BL BH BX EBX
CL CH CX ECX
DL DH DX EDX
BP EBP
SP ESP
DI EDI
SI ESI
ES CS SS DS GS FS
CRO CR2 CR3 CR4
DRO DR1 DR2 DR3 DR6 DR7
TR3 TR4 TR5 TR6 TR7
ST
ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)
MMO MMI MM2 MM3 MM4 MM5 MM6 MM7
XMMO XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7

Register64:
RAX RBX RCX RDX
BPL RBP
SPL RSP
DIL RDI
SIL RSI
R8B R8W R8D RS8

RO9B ROW ROD RS

R10B R10W R10D R10

R11B R11W R11D R11

R12B R12W R12D R12

R13B R13W R13D R13

R14B R14W R14D R14

R15B R15W R15D R15

XMM8 XMM9 XMM10 XMM11 XMM12 XMM13 XMM14 XMM15
YMMO YMM1 YMM2 YMM3 YMM4 YMM5 YMM6 YMM7
YMM8 YMM9 YMM10O YMM11 YMM12 YMM13 YMM14 YMM15

Operand:
AsmEzxp

AsmExp:
AsmLogOrExzp
AsmLogOrExp 7 AsmExp : AsmEzxp

AsmLogOrExp:
AsmLogAndEzxp
AsmLogOrExp || AsmLogAndExp

AsmlLogAndExp:
AsmOrEzp
AsmLogAndExp && AsmOrExzp

AsmOrExp:
AsmXorExzp
AsmOrEzp | AsmXorEzp

AsmXorExp:
AsmAndExzp
AsmXorExp ~ AsmAndExp

54

AsmAndExp:
AsmEqualExzp
AsmAndEzp & AsmEqualExp

AsmEqualExp:
AsmRelExzp
AsmEqualExzp == AsmRelEzxp
AsmEqualEzp '= AsmRelEzxp

AsmRelExp:
AsmSh ftExp
AsmRelExp < AsmShiftExp
AsmBelExp <= AsmShiftExp
AsmRelExp > AsmShiftExp
AsmRelExp >= AsmShiftEzp

AsmShiftExp:
AsmAddEzp
AsmShiftEzp << AsmAddExp
AsmShiftEzp >> AsmAddEzp
AsmShiftExp >>> AsmAddExp

AsmAddExp:
AsmMulExp
AsmAdddEzp + AsmMulExp
AsmAdddEzp - AsmMulExp

AsmMulExp:
AsmBrEzp
AsmMulEzp * AsmBrEzp
AsmMulEzp / AsmBrExzp
AsmMulEzp Y, AsmBrEzp

CHAPTER 3. GRAMMAR

AsmBrExp:
AsmUnaEzp
AsmBrExp [AsmEzp]

AsmUnaExp:
AsmTypePrefixz AsmExp
offsetof AsmEzxp
seg AsmExzp
+ AsmUnaEzxp

AsmUnaEzp

! AsmUnaExp

~ AsmUnaEzp

AsmPrimaryExp

AsmPrimaryExp:
IntegerLiteral
FloatlLiteral
__LOCAL_SIZE
$
Register
Register : AsmExp
Registeré6
Register64 : AsmExp
DotIdentifier
this

DotIdentifier:
Identifier
Identifier . Dotldentifier

AsmTypePrefix:
near ptr
far ptr
byte ptr
short ptr
int ptr

o6

word ptr
dword ptr
qword ptr
float ptr
double ptr
real ptr

Declaration

Declaration:
FuncDeclaration
VarDeclarations
AliasDeclaration
dggregateDeclaration
EnumDeclaration
ImportDeclaration

AliasDeclaration:

CHAPTER 3. GRAMMAR

alias StorageClasses.p; BasicType Declarator ;
alias StorageClassesqpt BasicType FuncDeclarator ;

alias AliasDeclarationX ;

AliasDeclarationX:
AliasDeclarationY

AliasDeclarationX , AliasDeclarationY

AliasDeclarationY:
Identifier TemplateParameterspt =
Identifier TemplateParametersgpt

AutoDeclaration:
StorageClasses AutoDeclarationX ;

AutoDeclarationX:

StorageClasses py Type
Functionliteral

AutoDeclaration?t
AutoDeclarationX , AutoDeclarationY

AutoDeclarationY:
Identifier TemplateParameters.pt = Initializer

VarDeclarations:
StorageClassespt BasicType Declarators ;
AutoDeclaration

Declarators:
DeclaratorInitializer
DeclaratorInitializer , DeclaratorIdentifierlist

DeclaratorInitializer:
VarDeclarator
VarDeclarator TemplateParametersqps = Initializer
AltDeclarator
AltDeclarator = Initializer

DeclaratorIdentifierList:
DeclaratorIdentifier
DeclaratorIdentifier , DeclaratorIdentifierList

DeclaratorIdentifier:
VarDeclaratorIdentifier
AltDeclaratorIdentifier

VarDeclaratorIdentifier:
Identifier
Identifier TemplateParametersqp,; = Initializer

57

o8 CHAPTER 3.

AltDeclaratorIdentifier:
BasicType2 Identifier AltDeclaratorSuffizespt

BasicTypez Identifier AltDeclaratorSuffizesqpy = Inittalizer
BasicTypelqpt Identifier AltDeclaratorSuffizes
BasicType2opt Identifier AltDeclaratorSuffizes = Initializer

Declarator:
VarDeclarator
AltDeclarator

VarDeclarator:
BasicType2opt Identifier

AltDeclarator:
BasicType2qpt Identifier AltDeclaratorSuffizes
BasicType2.p; (AltDeclaratorX)
BasicType2op, (AltDeclaratorX) AltFuncDeclaratorSuffiz
BasicType2.p, (AltDeclaratorX) AltDeclaratorSuffizes

AltDeclaratorX:
BasicType2opt Identifier
BasicTypelqpty Identifier AltFuncDeclaratorSuffiz
AltDeclarator

AltDeclaratorSuffixes:
AltDeclaratorSuffiz
AltDeclaratorSuffixz AltDeclaratorSuffizes

AltDeclaratorSuffix:
[]

[4ssignEzpression]
[Type]

GRAMMAR

AltFuncDeclaratorSuffix:
Parameters MemberFunctionAttributes opt

StorageClasses:
StorageClass
StorageClass StorageClasses

StorageClass:
Linkagedttribute
Aligndtiribute
deprecated
enum
static
extern
abstract
final
override
synchronized
auto
scope
const
immutable
inout
shared
__gshared
Property
nothrow
pure
ref

Initializer:
VotdInttializer
NonVoidInitializer

VoidInitializer:
void

60

NonVoidInitializer:
EzpInitializer:
ArrayInitializer
StructInitializer

ExpInitializer:
AssignExpression

ArrayInitializer:
[ArrayMemberInitializations.pi]

ArrayMemberInitializations:
ArrayMemberInitialization
ArrayMemberInitialization ,
ArrayMemberInitialization , ArrayMemberInitializations

ArrayMemberInitialization:
NonVoidInitializer
AssignExpression : NonVoidInitializer

StructlInitializer:
{ StructMemberInitializers,p; }

StructMemberInitializers:
StructMemberInitializer
StructMemberInitializer |,
StructMemberInitializer , StructMemberInitializers

StructMemberInitializer:
NonVoidInitializer
Identifier : NonlVoidInitializer

CHAPTER 3. GRAMMAR

Function

FuncDeclaration:
StorageClassesqpy BasicType FuncDeclarator FunctionBody
AutoFuncDeclaration

AutoFuncDeclaration:
StorageClasses Identifier FuncDeclaratorSuffiz FunctionBody

FuncDeclarator:
BasicTypelopt Identifier FuncDeclaratorSuffiz

FuncDeclaratorSuffix:
Parameters MemberFunctiondttributes
TemplateParameters Parameters MemberFunctiondtiributes pt Constraint ot

Parameters:
(ParameterList op)

ParameterList:
Parameter
Parameter , ParameterList

Parameter:
InOut opy BasicType Declarator
InOut opy BasicType Declarator
InOut opy BasicType Declarator = AssignEzpression
InOut opy Type
InOut opy Type

62 CHAPTER 3. GRAMMAR

InOut:
InOutX
InOut InOutX

InOutX:
auto
TypeCtor
final
in
lazy
out
ref
return ref
scope

FunctionAttributes:
Functiondttribute
Functiondttribute Functiondttributes

FunctionAttribute:
nothrow
pure
Property

MemberFunctionAttributes:
MemberFunctiondttribute
MemberFunctiondttribute MemberFunctiondttributes

MemberFunctionAttribute:
const
immutable
inout
return
shared
Functiondttridbute

63

FunctionBody:
BlockStatement
FunctionContractsq,y BodyStatement
FunctionContracts

FunctionContracts:
InStatement OutStatement opt
OutStatement InStatement pt

InStatement:
in BlockStatement

OutStatement:
out BlockStatement
out (Identifier) BlockStatement

BodyStatement:
body BlockStatement

Constructor:
this Parameters MemberFunctiondtiributesqpt ;
this Parameters MemberFunctiondttributes,py FunctionBody
ConstructorTemplate

ConstructorTemplate:
this TemplateParameters Parameters MemberFunctiondtiributes pt Constraintpt ;¥
G

this TemplateParameters Parameters MemberFunctiondttributes py Constraint ps FunctionBody

Destructor:

this () MemberFunctiondttributes p; ;

64 CHAPTER 3. GRAMMAR

this () MemberFunctiondttiributes,p FunctionBody

Postblit:
this (this) MemberFunctiondttributes p; ;
this (this) MemberFunctiondttributes.,; FunctionBody

Allocator:
new Parameters ;
new Parameters FunctionBody

Deallocator:
delete Parameters ;
delete Parameters FunctionBody

Invariant:
invariant () BlockStatement
invariant BlockStatement

UnitTest:
unittest BlockStatement

StaticConstructor:
static this () MemberFunctiondttiributes p; ;
static this () MemberFunctiondtiributes,,, FunctionBody

StaticDestructor:
this () MemberFunctiondttributes p ;
this () MemberFunctiondtiributes py FunctionBody

static

static

SharedStaticConstructor:
shared static this () MemberFunctionAttributes p ;
shared static this () MemberFunctiondttributes py FunctionBody

65

SharedStaticDestructor:
shared static ~ this () MemberFunctiondttributes p; ;
shared static this () MemberFunctiondtiributes py FunctionBody

Aggregate

AggregateDeclaration:
ClassDeclaration
InterfaceDeclaration
StructDeclaration
UntonDeclaration

ClassDeclaration:
class Identifier ;
class Identifier BaseClassListps AggregateBody
ClassTemplateDeclaration

ClassTemplateDeclaration:
class Identifier TemplateParameters Constraint.p BaseClassListqpy AggregateBody
class Identifier TemplateParameters BaseClassList Constraint AggregateBody

InterfaceDeclaration:
interface Identifier ;
interface Identifier Baselnterfacelist.ps AggregateBody
InterfaceTemplateDeclaration

InterfaceTemplateDeclaration:
interface Identifier TemplateParameters Constraint.p; Baselnterfacelist.p; AggregateBody
interface Identifier TemplateParameters Baselnterfacelist Constraint AggregateBody

StructDeclaration:
struct Identifier ;

66 CHAPTER 3. GRAMMAR

struct Identifier AggregateBody
StructTemplateDeclaration
AnonStructDeclaration

StructTemplateDeclaration:
struct Identifier TemplateParameters Constraint.p; AggregateBody

AnonStructDeclaration:
struct AggregateBody

UnionDeclaration:
union Identifier ;
union Identifier AggregateBody
UnionTemplateDeclaration
AnonUnionDeclaration

UnionTemplateDeclaration:
union Identifier TemplateParameters Constraint.ps AggregateBody

AnonUnionDeclaration:
union AggregateBody

AggregateBody:
{ DeclDefspt }

BaseClassList:
SuperClass
SuperClass , Interfaces
Interfaces

BaselnterfaceList:
Interfaces

SuperClass:
BasicType

Interfaces:
Interface
Interface , Interfaces

Interface:
BasicType

AliasThis:
alias Identifier this ;

Enum

EnumDeclaration:
enum Identifier EnumBody
enum Identifier : EnumBaselype EnumBody
AnonymousEnumDeclaration

EnumBaseType:
Type

EnumBody :
{ EnumMembers }

B

EnumMembers:
EnumMember
EnumMember ,
EnumMember , EnumMembers

68 CHAPTER 3. GRAMMAR

EnumMember:
Identifier
Identifier = AssignExpression

AnonymousEnumDeclaration:
enum : EnumBaseType { EnumMembers }
enum { EnumMembers }
enum { AnonymousEnumMembers }

AnonymousEnumMembers:
AnonymousEnumMember
AnonymousEnumMember ,
AnonymousEnumMember , AnonymousEnumMembers

AnonymousEnumMember:
EnumMember
Type Identifier = AssignExpression

Template

TemplateDeclaration:
template Identifier TemplateParameters Constraint.,; { DeclDefsqp; }

TemplateParameters:
(TemplateParameterList qp;)

TemplateParameterList:
TemplateParameter
TemplateParameter ,
TemplateParameter , TemplateParameterlList

TemplateParameter:
TemplateTypeParameter
TemplateValueParameter
TemplatedliasParameter
TemplateTupleParameter
TemplateThisParameter

Constraint:
if (Ezpression)

Templatelnstance:
Identifier TemplatedArguments

TemplateArguments:
! (TemplatedrgumentList .p;)
! TemplateSingledrgument

TemplateArgumentList:
Templatedrgqument
Templatedrgument |,
TemplateArgqument , TemplateAdrqumentList

TemplateArgument:
Type
AssignExpression
Symbol

Symbol:
SymbolTazl
SymbolTail

SymbolTail:
Identifier

69

70 CHAPTER 3. GRAMMAR

Identifier . SymbolTail
Templatelnstance
TemplateInstance . SymbolTail

TemplateSingleArgument:
Identifier
BasicTypeX
CharacterLiteral
Stringliteral
IntegerLiteral
FloatLiteral
true
false
null
this
SpecialKeyword

TemplateTypeParameter:
Identifier
Identifier TemplateTypeParameterSpecialization
Identifier TemplateTypeParameterDefault
Identifier TemplateTypeParameterSpecialization TemplatelypeParameterDefault

TemplateTypeParameterSpecialization:
Type

TemplateTypeParameterDefault:
= Type

TemplateThisParameter:
this TemplateTypeParameter

TemplateValueParameter:
BasicType Declarator

71

BasicType Declarator TemplatelValueParameterSpecialization
BasicType Declarator TemplatelValueParameterDefault
BasicType Declarator TemplatelValueParameterSpecialization TemplatelValueParameterDefault

TemplateValueParameterSpecialization:
ConditionalExpression

TemplateValueParameterDefault:
AssignExpression
SpecialKeyword

TemplateAliasParameter:
alias Identifier TemplatedliasParameterSpecialization, TIemplatedliasParameterDefault opt
alias BasicType Declarator TemplatedliasParameterSpectialization.,, TemplatedliasParameterl

TemplateAliasParameterSpecialization:

Type
ConditionalEzpression

TemplateAliasParameterDefault:

= Type
= (ConditionalEzpression

TemplateTupleParameter:
Identifier

TemplateMixinDeclaration:
mixin template Identifier TemplateParameters Constraint.y { DeclDefsp; }

TemplateMixin:
mixin MizinTemplateName Templatedrguments.pt Identifierqpt ;

72

MixinTemplateName:
QualifiedIdentifierList

QualifiedIdentifierList

Typeof . QualifiedIdentifierList

QualifiedIdentifierList:

Identifier

Identifier . QualifiedIdentifierList

Templatelnstance

Attribute

AttributeSpecifier:

Attridbute

QualifiedIdentifierList

Attribute DeclarationBlock

Attribute:

Linkagedttribute
Aligndtiribute
Deprecateddttribute
Protectiondttribute
Pragma

static

extern

abstract

final

override
synchronized

auto

scope

const

immutable

inout

shared

__gshared

Property

CHAPTER 3. GRAMMAR

nothrow
pure
ref

DeclarationBlock:
DeclDef
{ DeclDefspy }

LinkageAttribute:
extern (LinkageType)
extern (C++, IdentifierList)
extern (C++, CppAggregateType)

LinkageType:
C
C++
D
Windows
Pascal
System
Objective-C

CppAggregateType:
class
struct

AlignAttribute:
align
align (AssignEzpression)

DeprecatedAttribute:
deprecated
deprecated (AssignEzpression)

73

74 CHAPTER 3. GRAMMAR

ProtectionAttribute:
private
package
package (IdentifierlList)
protected
public
export

Property:
@ Propertyldentifier
UserDefineddttridbute

PropertyIdentifier:
property
safe
trusted
system
disable
nogc

UserDefinedAttribute:

(ArgumentList)

@ Identifier

@ Identifier (Argumentlist.p)

@ Templatelnstance

@ TemplateInstance (Argumentlist.p;)

@

Pragma:
pragma (Identifier)
pragma (Identifier , ArgumentList)

Conditional

ConditionalDeclaration:
Condition DeclarationBlock

Condition DeclarationBlock else DeclarationBlock
Condition : DeclDefsqpt
Condition DeclarationBlock else : DeclDefsqpt

ConditionalStatement:
Condition NoScopeNonEmptyStatement
Condition NoScopeNonEmptyStatement else NoScopeNonEmptyStatement

Condition:
VersionCondition
DebugCondition
StaticIfCondition

VersionCondition:
version (IntegerLiteral)
version (Identifier)
version (unittest)
version (assert)

DebugCondition:
debug
debug (IntegerLiteral)
debug (Identifier)

StaticIfCondition:
static if (AssignEzpression)

VersionSpecification:
version = Identifier ;
version = IntegerLiteral ;

DebugSpecification:
debug = Identifier ;

75

76 CHAPTER 3. GRAMMAR

debug = IntegerLiteral ;

StaticAssert:
static assert (AssignEzpression ,op;);
static assert (AssignExzpression , AssignEzpression ,op;);

Module

Module:
ModuleDeclaration DeclDefs
DeclDefs

DeclDefs:
DeclDef
DeclDef DeclDefs

DeclDef:
AttributeSpecifier
Declaration
Constructor
Destructor
Postblit
Allocator
Deallocator
Invariant
UnitTest
AliasThis
StaticConstructor
StaticDestructor
SharedStaticConstructor
SharedStaticDestructor
ConditionalDeclaration
DebugSpecification
VersionSpectification
Staticdssert
TemplateDeclaration

TemplateMizinDeclaration
TemplateMizin
MizinDeclaration

b

ModuleDeclaration:
Moduledttributes pt module ModuleFullyQualifiedName ;

ModuleAttributes:
Moduledttribute
Moduledttribute ModuleAttributes

ModuleAttribute:
Deprecateddttribute
UserDefineddttribute

ModuleFullyQualifiedName:
ModuleName
Packages . ModuleName

ModuleName:
Identifier

Packages:
PackagelName
Packages . PackagelName

PackageName:
Identifier

ImportDeclaration:
import ImportlList ;

78

static import Importlist ;

ImportList:
Import
ImportBindings
Import , Importlist

Import:
ModuleFullyQualzfiedName

ModuledliasIdentifier = ModuleFullyQualifiedVame

ImportBindings:
Import : ImportBindList

ImportBindList:
ImportBind
ImportBind , ImportBindlList

ImportBind:
Identifier
Identifier = Identifier

ModuleAliasIdentifier:
Identifier

MixinDeclaration:
mixin (4ssignEzpression) ;

CHAPTER 3. GRAMMAR

Chapter 4

Modules

Module:
ModuleDeclaration DeclDefs
DeclDefs

DeclDefs:
DeclDef
DeclDef DeclDefs

DeclDef:
AttributeSpecifier
Declaration
Constructor
Destructor
Postblit
Allocator
Deallocator
Invariant
UnttTest
AliasThts
StaticConstructor
StaticDestructor
SharedStaticConstructor
SharedStaticDestructor
ConditionalDeclaration

79

80 CHAPTER 4. MODULES

DebugSpecification
VersionSpectification
StaticAssert
TemplateDeclaration
TemplateMizinDeclaration
TemplateMizin
MizinDeclaration

3

Modules have a one-to-one correspondence with source files. The module name is, by default,
the file name with the path and extension stripped off, and can be set explicitly with the module
declaration.

Modules automatically provide a namespace scope for their contents. Modules superficially
resemble classes, but differ in that:

There’s only one instance of each module, and it is statically allocated.
There is no virtual table.

Modules do not inherit, they have no super modules, etc.

Only one module per file.

Module symbols can be imported.

Modules are always compiled at global scope, and are unaffected by surrounding attributes
or other modifiers.

Modules can be grouped together in hierarchies called packages.
Modules offer several guarantees:

e The order in which modules are imported does not affect the semantics.
e The semantics of a module are not affected by what imports it.

e If a module C imports modules A and B, any modifications to B will not silently change code
in C that is dependent on A.

Module Declaration

The ModuleDeclaration sets the name of the module and what package it belongs to. If absent,
the module name is taken to be the same name (stripped of path and extension) of the source file
name.

ModuleDeclaration:
Moduledttributes p, module ModuleFullyfualifiedName ;

81

ModuleAttributes:
Moduledttribute
Moduledttribute Moduledttributes

ModuleAttribute:
Deprecateddttribute
UserDefineddttribute

ModuleFullyQualifiedName:
ModulelName
Packages . ModulelName

ModuleName:
Identifier

Packages:
PackagelName
Packages . PackageName

PackageName:
Identifier

The Identifiers preceding the rightmost are the Packages that the module is in. The packages
correspond to directory names in the source file path. Package names cannot be keywords, hence
the corresponding directory names cannot be keywords, either.

If present, the ModuleDeclaration appears syntactically first in the source file, and there can be
only one per source file.

Example:

module c.stdio; // module stdio in the c¢ package

By convention, package and module names are all lower case. This is because those names can
have a one-to-one correspondence with the operating system’s directory and file names, and many

82 CHAPTER 4. MODULES

file systems are not case sensitive. All lower case package and module names will minimize problems
moving projects between dissimilar file systems.

If the file name of a module is an invalid module name (e.g. foo-bar.d), you may use a module
declaration to set a valid module name:

module foo_bar;

ModuleDeclaration can have an optional DeprecatedAttribute. The compiler will produce a mes-
sage when the deprecated module is imported.

deprecated module foo;
module bar;
import foo; // Deprecated: module foo is deprecated
DeprecatedAttribute can have an optional string argument to provide a more expressive message.
deprecated("Please juse foo2 instead.")

module foo;

module bar;
import foo; // Deprecated: module foo is deprecated - Please use foo2 instead.

Import Declaration

Symbols from one module are made available in another module by using the ImportDeclaration:

ImportDeclaration:
import ImportlList ;
static import ImportlList ;

ImportList:
Import
ImportBindings
Import , Importlist

Import:
ModuleFullyQualtfiedName
ModuledliasIdentifier = ModuleFullyQualzfiedName

83

ImportBindings:
Import : ImportBindList

ImportBindList:
ImportBind
ImportBind , ImportBindlList

ImportBind:
Identifier
Identifier = Identifier

ModuleAliasIdentifier:
Identifier

There are several forms of the ImportDeclaration, from generalized to fine-grained importing.

The order in which ImportDeclarations occur has no significance.

ModuleFullyQualifiedNames in the ImportDeclaration must be fully qualified with whatever
packages they are in. They are not considered to be relative to the module that imports them.

Symbol Name Lookup
The simplest form of importing is to just list the modules being imported:

module myapp.main;
import std.stdio; // import module stdio from package std

class Foo : BaseClass
{
import myapp.foo; // import module myapp.foo in this class’ scope
void bar ()
{
import myapp.bar; // import module myapp.bar in this function’ scope
writeln("hello!"); // calls std.stdio.writeln

84 CHAPTER 4. MODULES

When a symbol name is used unqualified, a two-phase lookup will happen. First, the module
scope will be searched, starting from the innermost scope. For example, in the previous example,
while looking for ‘writeln’, the order will be:

Declarations inside ‘bar’.
Declarations inside ‘Foo’.
Declarations inside ‘BaseClass’.

Declarations at module scope.

If the first lookup wasn’t successful, a second one is performed on imports. In the second
lookup phase inherited scopes are ignored. This includes scope of base classes and interface (in this
example, ‘BaseClass”s imports would be ignored), as well as imports in mixed-in template.

Symbol lookup stops as soon as a symbol is found. If two symbols with the same name are
found at the same lookup phase, this ambiguity will result in a compilation error.

module A;
void foo();
void bar();

module B;
void foo();
void bar();

module C;

import A;

void foo();

void test()

{
foo(); // C.foo() is called, it is found before imports are searched
bar(); // A.bar() is called, since imports are searched

}

module D;

import A;

import B;

void test()

{
foo(); // error, A.foo() or B.foo() 7
A.foo(); // ok, call A.foo()
B.foo(); // ok, call B.foo()

module E;

import A;

import B;

alias foo = B.foo;
void test()

{
foo(); // call B.foo()
A.foo(); // call A.foo()
B.foo(); // call B.foo()
}

Public Imports

85

By default, imports are private. This means that if module A imports module B, and module
B imports module C, then names from C are visible only from B and not from A. This prevents

surprising name clashes from modules which haven’t directly been imported.

An import can be however specifically declared public, which will cause names from the imported
module to be visible to further imports. So in the above example where module A imports module

B, if module B publicly imports module C, names from C will be visible in A as well.

All symbols from a publicly imported module are also aliased in the importing module. Thus in
the above example if C contains the name foo, it will be accessible in A as foo, B.foo and C.foo.

For another example:

module W;
void foo() { }

module X;
void bar() { }

module Y;
import W;
public import X;

foo(); // calls W.foo()
bar(); // calls X.bar()

module Z;
import Y;

foo(); // error, foo() is undefined

bar(); // ok, calls X.bar()

86 CHAPTER 4. MODULES

X.bar(); // ditto
Y.var(); // ok, Y.bar() is an alias to X.bar()

Static Imports

Basic imports work well for programs with relatively few modules and imports. If there are a lot of
imports, name collisions can start occurring between the names in the various imported modules.
One way to stop this is by using static imports. A static import requires one to use a fully qualified
name to reference the module’s names:

static import std.stdio;

void main()

{

writeln("hello!"); // error, writeln is undefined
std.stdio.writeln("hello!"); // ok, writeln is fully qualified

Renamed Imports

A local name for an import can be given, through which all references to the module’s symbols
must be qualified with:

import io = std.stdio;

void main()

{
io.writeln("hello!"); // ok, calls std.stdio.writeln
std.stdio.writeln("hello!"); // error, std is undefined
writeln("hello!"); // error, writeln is undefined
}

Renamed imports are handy when dealing with very long import names.

Selective Imports
Specific symbols can be exclusively imported from a module and bound into the current namespace:

import std.stdio : writeln, foo = write;

void main()

{

87

std.stdio.writeln("hello!"); // error, std is undefined

writeln("hello!"); // ok, writeln bound into current namespace
write("world"); // error, write is undefined

foo("world"); // ok, calls std.stdio.write()
fwritefln(stdout, "abc"); // error, fwritefln undefined

static cannot be used with selective imports.

Renamed and Selective Imports
When renaming and selective importing are combined:

import io = std.stdio : foo = writeln;

void main()

{
writeln("bar"); // error, writeln is undefined
std.stdio.foo("bar"); // error, foo is bound into current namespace
std.stdio.writeln("bar"); // error, std is undefined
foo("bar"); // ok, foo is bound into current namespace,
// FQN not required
io.writeln("bar"); // ok, io=std.stdio bound the name io in
// the current namespace to refer to the entire V
 module
io.foo("bar"); // error, foo is bound into current namespace,
// foo is not a member of io
}

Scoped Imports
Import declarations may be used at any scope. For example:

void main()

{
import std.stdio;
writeln("bar");

The imports are looked up to satisfy any unresolved symbols at that scope. Imported symbols
may hide symbols from outer scopes.

88 CHAPTER 4. MODULES

In function scopes, imported symbols only become visible after the import declaration lexically
appears in the function body. In other words, imported symbols at function scope cannot be forward
referenced.

void main()

{
void writeln(string) {}
void foo()
{
writeln("bar"); // calls main.writeln
import std.stdio;
writeln("bar"); // calls std.stdio.writeln
void writeln(string) {}
writeln("bar"); // calls main.foo.writeln
}
writeln("bar"); // calls main.writeln
std.stdio.writeln("bar"); // error, std is undefined
}

Module Scope Operator

Sometimes, it’s necessary to override the usual lexical scoping rules to access a name hidden by a
local name. This is done with the global scope operator, which is a leading ‘.”:

int x;

int foo(int x)

{
if (y)
return x; // returns foo.x, not global x
else
return .x; // returns global x
}

The leading ‘.” means look up the name at the module scope level.

Static Construction and Destruction

Static constructors are code that gets executed to initialize a module or a class before the main()
function gets called. Static destructors are code that gets executed after the main() function returns,
and are normally used for releasing system resources.

89

There can be multiple static constructors and static destructors within one module. The static
constructors are run in lexical order, the static destructors are run in reverse lexical order.

Static constructors and static destructors run on thread local data, and are run whenever threads
are created or destroyed.

Shared static constructors and shared static destructors are run on global shared data, and
constructors are run once on program startup and destructors are run once on program termination.

Order of Static Construction

Shared static constructors on all modules are run before any static constructors.

The order of static initialization is implicitly determined by the import declarations in each
module. Each module is assumed to depend on any imported modules being statically constructed
first. Other than following that rule, there is no imposed order on executing the module static
constructors.

Cycles (circular dependencies) in the import declarations are allowed as long as not both of
the modules contain static constructors or static destructors. Violation of this rule will result in a
runtime exception.

Overriding Cycle Detection Abort

You can override the cyclic detection behavior using the D Runtime switch --DRT-oncycle=. ..
The following behaviors are supported:

1. abort The default behavior. The normal behavior as described in the previous section

2. deprecate This functions just like abort, but upon cycle detection the runtime will use a
flawed pre-2.072 algorithm to determine if the cycle was previously detected. If no cycles are
detected in the old algorithm, execution continues, but a deprecation message is printed.

3. print Print all cycles detected, but do not abort execution. When cycles are present, order
of static construction is implementation defined, and not guaranteed to be valid.

4. ignore Do not abort execution or print any cycles. When cycles are present, order of static
construction is implementation defined, and not guaranteed to be valid.

Order of Static Construction within a Module

Within a module, the static construction occurs in the lexical order in which they appear.

Order of Static Destruction

It is defined to be exactly the reverse order that static construction was performed in. Static de-
structors for individual modules will only be run if the corresponding static constructor successfully
completed.

90 CHAPTER 4. MODULES

Shared static destructors are executed after static destructors.

Order of Unit tests

Unit tests are run in the lexical order in which they appear within a module.

Mixin Declaration

MixinDeclaration:
mixin (AssignExpression) ;

The AssignFExpression must evaluate at compile time to a constant string. The text contents of
the string must be compilable as a valid DeclDefs, and is compiled as such.

Package Module

A package module can be used to publicly import other modules, while enabling a simpler import
syntax. It enables converting a module into a package of modules, without breaking existing code
which uses that module. Example of a set of library modules:

libweb/client.d:

module libweb.client;

void runClient() { }
libweb /server.d:

module libweb.server;

void runServer() { }
libweb /package.d:

module libweb;

public import libweb.client;
public import libweb.server;

The package module must have the file name package.d. The module name is declared to be the
fully qualified name of the package. Package modules can be imported just like any other modules:
test.d:

module test;

// import the package module
import libweb;

void main()

{
runClient () ;
runServer() ;

A package module can be nested inside of a sub-package:
libweb /utils /package.d:

// must be declared as the fully qualified name of the package, not just ’utils’
module libweb.utils;

// publicly import modules from within the ’libweb.utils’ package.
public import libweb.utils.conv;
public import libweb.utils.text;

The package module can then be imported with the standard module import declaration:
test.d:

module test;

// import the package module
import libweb.utils;

void main() { }

91

Chapter 5

Declarations

Declaration:
FuncDeclaration
VarDeclarations
AlzasDeclaration
AggregateDeclaration
EnumDeclaration
ImportDeclaration

VarDeclarations:
StorageClassesqpt BasicType Declarators ;
AutoDeclaration

Declarators:
DeclaratorInitializer
DeclaratorInitializer , Declaratorldentifierlist

DeclaratorInitializer:
VarDeclarator
VarDeclarator TemplateParametersqps = Initializer
AltDeclarator
AltDeclarator = Initializer

DeclaratorIdentifierList:

93

94 CHAPTER 5. DECLARATIONS

Declaratorldentifier
Declaratorldentifier , DeclaratorIdentifierlList

DeclaratorIdentifier:
VarDeclaratorIdentifier
AltDeclaratorldentifier

VarDeclaratorIdentifier:
Identifier
Identifier TemplateParameters.pt = Initializer

AltDeclaratorldentifier:
BasicTypez Identifier AltDeclaratorSuffizes qpt
BasicType2 Identifier AltDeclaratorSuffizesopt = Initializer
BasicType2qp; Identifier AltDeclaratorSuffizes
BasicTypelqpt Identifier AltDeclaratorSuffizes

Initializer

Declarator:
VarDeclarator
AltDeclarator

VarDeclarator:
BasicTypelqpt Identifier

AltDeclarator:
BasicTypelqpt Identifier AltDeclaratorSuffizes
BasicType2.p, (AltDeclaratorX)
BasicType2.p; (AltDeclaratorX) AltFuncDeclaratorSuffiz
BasicTypel,p; (AltDeclaratorX) AltDeclaratorSuffizes

AltDeclaratorX:
BasicTypelqpt Identifier
BasicTypelopy Identifier AltFuncDeclaratorSuffiz

AltDeclarator

AltDeclaratorSuffixes:
AltDeclaratorSuffiz
AltDeclaratorSuffixz AltDeclaratorSuffizes

AltDeclaratorSuffix:
L]
[4ssignEzpression]
[Type]

AltFuncDeclaratorSuffix:
Parameters MemberFunctiondtiributes qp

Type:
TypeCtorsopt BasicType BasicTypelqpt

TypeCtors:
TypeCtor
TypeCtor TypeCtors

TypeCtor:
const
immutable
inout
shared

BasicType:
BasicTypeX
IdentifierList
IdentifierList
Typeof
Typeof . IdentifierlList

95

96 CHAPTER 5. DECLARATIONS

TypeCtor (Type)

TypeVector

BasicTypeX:
bool int wchar ifloat creal
byte uint dchar idouble void
ubyte long float ireal
short ulong double cfloat
ushort char real cdouble

BasicType2:

BasicTypel2X BasicTypelopt

BasicType2X:
*
]
[4ssignEzpression]
[4ssignEzpression .. AssignExzpression]
[Type]
delegate Parameters MemberFunctiondttributes pt
function Parameters Functiondttributes ,pt

IdentifierList:
Identifier
Identifier . IdentifierlList
Templatelnstance

Templatelnstance . IdentifierList
Identifier [AssignExpression 1. IdentifierList

StorageClasses:
StorageClass
StorageClass StorageClasses

StorageClass:

Linkagedttribute static
Aligndttribute extern

deprecatedy abstract
. final

enum override
Initializer:

VoidInitializer

NonVordInitializer

NonVoidInitializer:
ExpInitializer
ArrayInitializer
StructInitializer

ExpInitializer:
AssignExpression

ArrayInitializer:

[ArrayMemberInitializations.p;]

ArrayMemberInitializations:
ArrayMemberInitialization

synchronized/

auto
scope
const

immutable
inout
shared
__gshared
Property

nothrow
pure
ref

97

98 CHAPTER 5. DECLARATIONS

ArrayMemberInitialization ,
ArrayMemberInitialization , ArrayMemberInitializations

ArrayMemberInitialization:
NonVoidInitializer
AssignExpression : NonVoidInitializer

StructInitializer:
{ StructMemberInitializers.p; }

StructMemberInitializers:
StructMemberInitializer
StructMemberInitializer |,
StructMemberInitializer , StructMemberInitializers

StructMemberInitializer:
NonVordInttializer
Identifier : NonlVoidInitializer

Declaration Syntax
Declaration syntax generally reads right to left:

int x; // x is an int

int* x; // x is a pointer to int

int** x; // x is a pointer to a pointer to int
int[] x; // x is an array of ints

int*x[] x; // x is an array of pointers to ints
int[l* x; // x is a pointer to an array of ints

Arrays read right to left as well:

int [3] x; // x is an array of 3 ints
int[3][5] x; // x is an array of 5 arrays of 3 ints
int[3]1*[5] x; // x is an array of 5 pointers to arrays of 3 ints

Pointers to functions are declared using the function keyword:

99

int function(char) x; // x is a pointer to
// a function taking a char argument
// and returning an int
int function(char)[] x; // x is an array of
// pointers to functions
// taking a char argument
// and returning an int

C-style array, function pointer and pointer to array declarations are deprecated:

int x[3]; // x is an array of 3 ints

int x[3][6]; // x is an array of 3 arrays of 5 ints

int (*x[5])[3]; // x is an array of 5 pointers to arrays of 3 ints

int (*x) (char); // x is a pointer to a function taking a char argument

// and returning an int
int (x[] x)(char); // x is an array of pointers to functions
// taking a char argument and returning an int

In a declaration declaring multiple symbols, all the declarations must be of the same type:

int x,y; // x and y are ints

int* x,y; // x and y are pointers to ints
int x,*y; // error, multiple types

int[] x,y; // x and y are arrays of ints
int x[1,y; // error, multiple types

Implicit Type Inference

AutoDeclaration:
StorageClasses AutoDeclarationX ;

AutoDeclarationX:
AutoDeclarationY
AutoDeclarationX , AutoDeclarationY

AutoDeclarationY:
Identifier TemplateParametersqp; = Initializer

If a declaration starts with a StorageClass and has a NonVoidInitializer from which the type
can be inferred, the type on the declaration can be omitted.

100 CHAPTER 5. DECLARATIONS

static x = 3; // x is type int
auto y // y is type uint

]
S
[

auto s = "string"; // s is type immutable(char) []
class C { ... %}

auto ¢ = new C(); // ¢ is a handle to an instance of class C

The NonVoidInitializer cannot contain forward references (this restriction may be removed in
the future). The implicitly inferred type is statically bound to the declaration at compile time, not
run time.

An ArrayLiteral is inferred to be a dynamic array type rather than a static array:

auto v = ["hello", "world"l; // type is stringl[], not string[2]

Alias Declarations

AliasDeclaration:
alias StorageClasses.p; BasicType Declarators ;
alias StorageClassesqpt BasicType FuncDeclarator ;
alias Al2asDeclarationX ;

AliasDeclarationX:
AliasDeclarationY
AliasDeclarationX , AliasDeclarationt

AliasDeclarationY:
Identifier TemplateParameters.y, = StorageClassesqp Type
Identifier TemplateParametersqpy = FunctionlLiteral

AliasDeclarations create a symbol that is an alias for another type, and can be used anywhere
that other type may appear.

alias myint = abc.Foo.bar;

Aliased types are semantically identical to the types they are aliased to. The debugger cannot
distinguish between them, and there is no difference as far as function overloading is concerned.
For example:

101

alias myint = int;

void foo(int x) { ... }

void foo(myint m) { ... } // error, multiply defined function foo
A symbol can be declared as an alias of another symbol. For example:

import string;
alias mylen = string.strlen;

int len = mylen("hello"); // actually calls string.strlen()
The following alias declarations are valid:

template Foo2(T) { alias t = T; }
Foo2! (int);

alias t2 = Foo2!(int).t;

alias t3 = tl1.t;

alias t4 = t2;

alias t1

tl.t vl; // vl is type int

t2 v2; // v2 is type int
t3 v3; // v3 is type int
t4d v4; // v4 is type int

Aliased symbols are useful as a shorthand for a long qualified symbol name, or as a way to
redirect references from one symbol to another:

version (Win32)

{

alias myfoo = win32.foo;
b
version (linux)
{

alias myfoo = linux.bar;
b

Aliasing can be used to ‘import’ a symbol from an import into the current scope:
alias strlen = string.strlen;

Aliases can also ‘import’ a set of overloaded functions, that can be overloaded with functions in
the current scope:

102 CHAPTER 5. DECLARATIONS

class A
{
int foo(int a) { return 1; %}
}
class B : A
{
int foo(int a, uint b) { return 2; }
}
class C : B
{
int foo(int a) { return 3; %}
alias foo = B.foo;
}
class D : C
{
}
void test()
{
Db =new DO;
int 1i;
i = b.foo(1, 2u); // calls B.foo
i = b.foo(1); // calls C.foo
}

Note: Type aliases can sometimes look indistinguishable from alias declarations:
alias abc = foo.bar; // is it a type or a symbol?

The distinction is made in the semantic analysis pass.
Aliases cannot be used for expressions:

struct S { static int i; }
S s;

alias a = s.i; // illegal, s.i is an expression
alias b = S.i; // ok
b = 4; // sets S.i to 4

103

Extern Declarations

Variable declarations with the storage class extern are not allocated storage within the module.
They must be defined in some other object file with a matching name which is then linked in. The
primary usefulness of this is to connect with global variable declarations in C files.

An extern declaration can optionally be followed by an extern linkage attribute. If there is no
linkage attribute it defaults to extern(D):

extern(C) int foo; // variable allocated and initialized in this module /
s with C linkage
extern extern(C) int bar; // variable allocated outside this module with C /

s linkage
// (e.g. in a statically linked C library or another v
 module)
typeof
Typeof:

typeof (Ezpression)
typeof (return)

Typeof is a way to specify a type based on the type of an expression. For example:

void func(int i)

{
typeof (i) j; // j is of type int
typeof(3 + 6.0) x; // x is of type double
typeof (1)* p; // p is of type pointer to int
int [typeof(p)] a; // a is of type int[int*]
writefln("%d", typeof(’c’).sizeof); // prints 1
double ¢ = cast(typeof(1.0))j; // cast j to double
}

Expression is not evaluated, just the type of it is generated:

void func()

{
int 1 = 1;
typeof (++i) j; // j is declared to be an int, i is not incremented
writefln("%d", i); // prints 1

104 CHAPTER 5. DECLARATIONS

There are three special cases:

1. typeof (this) will generate the type of what this would be in a non-static member function,
even if not in a member function.

2. Analogously, typeof (super) will generate the type of what super would be in a non-static
member function.

3. typeof (return) will, when inside a function scope, give the return type of that function.

class A { }
class B : A
{

typeof (this) x; // x is declared to be a B
typeof (super) y; // y is declared to be an A

}
struct C
{
static typeof(this) z; // z is declared to be a C
typeof (super) q; // error, no super struct for C
}
typeof (this) r; // error, no enclosing struct or class
If the expression is a Property Function, typeof gives its return type.
struct S
{
@property int foo() { return 1; }
}

typeof(S.foo) n; // n is declared to be an int

Where Typeof is most useful is in writing generic template code.

Void Initializations

VoidInitializer:
void

105

Normally, variables are initialized either with an explicit Initializer or are set to the default
value for the type of the variable. If the Initializer is void, however, the variable is not initialized.
If its value is used before it is set, undefined program behavior will result.

void foo()
{
int x = void;
writeln(x); // will print garbage

Therefore, one should only use void initializers as a last resort when optimizing critical code.

Global and Static Initializers

The Initializer for a global or static variable must be evaluatable at compile time. Whether some
pointers can be initialized with the addresses of other functions or data is implementation defined.
Runtime initialization can be done with static constructors.

Type Qualifiers vs. Storage Classes

D draws a distinction between a type qualifer and a storage class.

A type qualifier creates a derived type from an existing base type, and the resulting type may
be used to create multiple instances of that type.

For example, the immutable type qualifier can be used to create variables of immutable type,
such as:

immutable(int) x; // typeof(x) == immutable (int)
immutable(int) [1 y; // typeof(y) == immutable(int) []
// typeof (y[0]) == immutable (int)

// Type constructors create new types that can be aliased:
alias ImmutableInt = immutable(int);
ImmutableInt z; // typeof(z) == immutable(int)

A storage class, on the other hand, does not create a new type, but describes only the type of
storage used by the variable or function being declared. For example, a member function can be
declared with the const storage class to indicate that it does not modify its implicit this argument:

struct S

{
int x;
int method() const
{

106 CHAPTER 5. DECLARATIONS

//x++; // Error: this method is const and cannot modify this.x
return x; // OK: we can still read this.x

Although some keywords can be used both as a type qualifier and a storage class, there are some
storage classes that cannot be used to construct new types. One example is ref:

// ref declares the parameter x to be passed by reference
void func(ref int x)

{
x++; // so modifications to x will be visible in the caller
X
void main()
{
auto x = 1;
func(x) ;
assert(x == 2);
// However, ref is not a type qualifier, so the following is illegal:
ref(int) y; // Error: ref is not a type qualifier.
}

// Functions can also be declared as ’ref’, meaning their return value is
// passed by reference:
ref int func2()
{
static int y = 0;
return y;

void main()

{
func2() = 2; // The return value of func2() can be modified.
assert(func2() == 2);

// However, the reference returned by func2() does not propagate to

// variables, because the ’ref’ only applies to the return value itself,
// not to any subsequent variable created from it:

auto x = func2();

107

static assert(is(typeof(x) == int)); // N.B.: *not* ref(int);
// there is no such type as ref(int).
XH+;
assert(x == 3);
assert(func2() == 2); // x is not a reference to what func2() returned; it

// does not inherit the ref storage class from func2().

Due to the fact that some keywords, such as const, can be used both as a type qualifier and a

storage class, it may sometimes result in ambiguous-looking code:

struct S

{

// Is const here a type qualifier or a storage class?

// Is the return value const(int), or is this a const function that returns
// (mutable) int?

const int func() { return 1; }

To avoid such confusion, it is recommended that type qualifier syntax with parentheses always

be used for return types, and that function storage classes be written on the right-hand side of the
declaration instead of the left-hand side where it may be visually confused with the return type:

struct S

{

// Now it is clear that the ’const’ here applies to the return type:
const(int) funcl() { return 1; }

// And it is clear that the ’const’ here applies to the function:
int func2() const { return 1; }

109

110

Chapter 6

Types

Basic Data Types

CHAPTER 6. TYPES

Basic Data Types

Keyword Default Initializer (.init) Description

void - no type

bool false boolean value

byte 0 signed 8 bits

ubyte 0 unsigned 8 bits

short 0 signed 16 bits

ushort 0 unsigned 16 bits

int 0 signed 32 bits

uint 0 unsigned 32 bits

long oL signed 64 bits

ulong OL unsigned 64 bits

cent 0 signed 128 bits (reserved for future use)
ucent 0 unsigned 128 bits (reserved for future use)
float float.nan 32 bit floating point

double double.nan 64 bit floating point

real real.nan largest FP size implemented in hardware!
ifloat float.nanx*1.01 imaginary float

idouble double.nan*1.0i imaginary double

ireal real.nan*1.01 imaginary real

cfloat float.nan+float.nan*1.0i a complex number of two float values
cdouble double.nan+double.nan*1.0i complex double

creal real .nan+real.nanx1.01i complex real

char OxFF unsigned 8 bit (UTF-8 code unit)
wchar OxFFFF unsigned 16 bit (UTF-16 code unit)
dchar 0xO0000FFFF unsigned 32 bit (UTF-32 code unit)

Tmplementation Note: 80 bits for x86 CPUs or double size, whichever is larger

111

Derived Data Types

e pointer

array

associative array
function

delegate

Strings are a special case of arrays.

User Defined Types

alias

enum
struct
union

class

Base Types

The base type of an enum is the type it is based on:

enum E : T{ ... } // T is the base type of E

Pointer Conversions

Casting pointers to non-pointers and vice versa is allowed in D, however, do not do this for any
pointers that point to data allocated by the garbage collector.

Implicit Conversions

Implicit conversions are used to automatically convert types as required.

An enum can be implicitly converted to its base type, but going the other way requires an
explicit conversion.

For example:

int 1i;

enum Foo { E }

Foo f;

i=f; // OK
f=1i; // error

112 CHAPTER 6. TYPES

f = cast(Foo)i; // OK
f =0; // error
f = Foo.E; // OK

Integer Promotions

Integer Promotions are conversions of the following types:

Integer Promotions

from to
bool int
byte int

ubyte int
short int
ushort int
char int
wchar int
dchar uint

If an enum has as a base type one of the types in the left column, it is converted to the type in
the right column.

Usual Arithmetic Conversions

The usual arithmetic conversions convert operands of binary operators to a common type. The
operands must already be of arithmetic types. The following rules are applied in order, looking at
the base type:

If either operand is real, the other operand is converted to real.
Else if either operand is double, the other operand is converted to double.
Else if either operand is float, the other operand is converted to float.

- W=

Else the integer promotions are done on each operand, followed by:

a) If both are the same type, no more conversions are done.

b) If both are signed or both are unsigned, the smaller type is converted to the larger.

c¢) If the signed type is larger than the unsigned type, the unsigned type is converted to the
signed type.

d) The signed type is converted to the unsigned type.

113

If one or both of the operand types is an enum after undergoing the above conversions, the
result type is:

1. If the operands are the same type, the result will be the that type.

2. If one operand is an enum and the other is the base type of that enum, the result is the base
type.

3. If the two operands are different enums, the result is the closest base type common to both.
A base type being closer means there is a shorter sequence of conversions to base type to get
there from the original type.

Integer values cannot be implicitly converted to another type that cannot represent the integer
bit pattern after integral promotion. For example:

ubyte ul = cast(byte)-1; // error, -1 cannot be represented in a ubyte

ushort u2 = cast(short)-1; // error, -1 cannot be represented in a ushort
uint u3 = cast(int)-1; // ok, -1 can be represented in a uint
ulong u4 = cast(long)-1; // ok, -1 can be represented in a ulong

Floating point types cannot be implicitly converted to integral types.

Complex floating point types cannot be implicitly converted to non-complex floating point types.

Imaginary floating point types cannot be implicitly converted to float, double, or real types.
Float, double, or real types cannot be implicitly converted to imaginary floating point types.

bool

The bool type is a 1 byte size type that can only hold the value true or false. The only operators
that can accept operands of type bool are: & | =~ &= |= ~=! && || ?:. A bool value can be
implicitly converted to any integral type, with false becoming 0 and true becoming 1. The numeric
literals 0 and 1 can be implicitly converted to the bool values false and true, respectively. Casting
an expression to bool means testing for 0 or !=0 for arithmetic types, and null or !=null for pointers
or references.

Delegates

There are no pointers-to-members in D, but a more useful concept called delegates are supported.
Delegates are an aggregate of two pieces of data: an object reference and a pointer to a non-static
member function, or a pointer to a closure and a pointer to a nested function. The object reference
forms the this pointer when the function is called.

Delegates are declared similarly to function pointers, except that the keyword delegate takes
the place of (*), and the identifier occurs afterwards:

int function(int) fp; // fp is pointer to a function
int delegate(int) dg; // dg is a delegate to a function

114 CHAPTER 6. TYPES

The C style syntax for declaring pointers to functions is
deprecated:

int (xfp)(int); // fp is pointer to a function
A delegate is initialized analogously to function pointers:

int func(int);
fp = &func; // fp points to func

class 0B
{

int member (int);

+

OB o;

dg = &o.member; // dg is a delegate to object o and
// member function member

Delegates cannot be initialized with static member functions or non-member functions.
Delegates are called analogously to function pointers:

fp(3); // call func(3)
dg(3); // call o.member(3)

The equivalent of member function pointers can be constructed using anonymous lambda func-
tions:

class C
{
int a;
int foo(int i) { return i + a; }

// mfp is the member function pointer

auto mfp = function(C self, int i) { return self.foo(i); I};
auto ¢ = new C(); // create an instance of C

mfp(c, 1); // and call c.foo(1)

size_t

size_t is an alias to one of the unsigned integral basic types, and represents a type that is large
enough to represent an offset into all addressible memory.

115

ptrdiff_t

ptrdiff_t is an alias to the signed basic type the same size as size_t.

Chapter 7

Properties

Every type and expression has properties that can be queried:

Property Examples

Expression Value

int.sizeof yields 4

float.nan yields the floating point nan (Not A Number) value
(float) .nan yields the floating point nan value

(3) .sizeof yields 4 (because 3 is an int)

int.init default initializer for int’s

int.mangleof yields the string "i"

int.stringof yields the string "int"

(1+2) .stringof yields the string "1 + 2"

Properties for All Types

Property Description

.init initializer

.sizeof size in bytes (equivalent to C’s sizeof(type))

.alignof alignment size

.mangleof string representing the ‘mangled’ representation of the type
.stringof string representing the source representation of the type

117

118 CHAPTER 7. PROPERTIES

Properties for Integral Types

Property Description

.init initializer (0)
.max maximum value
.min minimum value

Properties for Floating Point Types

Property Description

.init initializer (NaN)

.infinity infinity value

.nan NaN value

.dig number of decimal digits of precision

.epsilon smallest increment to the value 1

.mant_dig number of bits in mantissa

.max_10_exp maximum int value such that 10<sup>max_10_exp< /sup> is representable
.max_exp maximum int value such that 2^{max_exp-1} is representable

.min_10_exp minimum int value such that 10^{min_10_exp} is representable
as a normalized value

.min_exp minimum int value such that 2^{min_exp-1} is representable as
a normalized value

.max largest representable value that’s not infinity
.min_normal smallest representable normalized value that’s not 0
.re real part

.im imaginary part

Properties for Class Types

Property Description

.classinfo Information about the dynamic type of the class

.init Property

.init produces a constant expression that is the default initializer. If applied to a type, it is the
default initializer for that type. If applied to a variable or field, it is the default initializer for that
variable or field’s type. For example:

int a;

int b = 1;

typedef int t = 2;
t c;

119

t d = cast(t)3;

int.init // is
a.init // is
.init // is
.init // is
.init // is
.init // is

Q 0 o o
N NN O

struct Foo

{
int a;
int b = 7;

Foo.init.a // is 0
Foo.init.b // is 7

Note: .init produces a default initialized object, not default constructed. That means using
.init is sometimes incorrect.

1. If T is a nested struct, the context pointer in T.init is null.

void main()

{
int a;
struct S
{
void foo() { a = 1; } // access a variable in enclosing scope
}
S s1; // OK. S() correctly initialize its frame pointer.
S s2 = S0); // OK. same as sl
S s3 = S.init; // Bad. the frame pointer in s3 is null
s3.foo(); // Access violation
}
2. If T is a struct which has @disable this();, T.init might return a logically incorrect object
struct S
{
int a;

@disable this();

120 CHAPTER 7. PROPERTIES

this(int n) { a = n; }
invariant { assert(a > 0); }
void check() {}

}
void main()
{
//8 s1; // Error: variable sl initializer required for type S
//S 82 = S(); // Error: constructor S.this is not callable
// because it is annotated with @disable
S 83 = S.init; // Bad. s3.a == 0, and it violates the invariant of S.
s3.check(); // Assertion failure.
}

.stringof Property

.stringof produces a constant string that is the source representation of its prefix. If applied to
a type, it is the string for that type. If applied to an expression, it is the source representation of
that expression. Semantic analysis is not done for that expression. For example:

module test;
import std.stdio;

struct Foo { }
enum Enum { RED }
typedef int myint;

void main()

{
writeln((1+2) .stringof); // "L+ 2"
writeln(Foo.stringof); // "Foo"
writeln(test.Foo.stringof) ; // "Foo"
writeln(int.stringof); // "int"
writeln((int*[5][1).stringof); // "int*[5u] []"
writeln(Enum.RED.stringof) ; // "cast (enum)0"
writeln(test.myint.stringof); // "myint"
writeln((5) .stringof); // "5"

121

Note: Using .stringof for code generation is not recommended, as the internal representation
of a type or expression can change between different compiler versions.

Instead you should prefer to use the identifier trait, or one of the Phobos helper functions such
as fullyQualifiedName.

.sizeof Property

e.sizeof gives the size in bytes of the expression e.
When getting the size of a member, it is not necessary for there to be a this object:

struct S
{
int a;
static int foo()
{
return a.sizeof; // returns 4
}
}
void test()
{
int x = S.a.sizeof; // sets x to 4
}

.sizeof applied to a class object returns the size of the class reference, not the class instantia-
tion.

.alignof Property

.alignof gives the aligned size of an expression or type. For example, an aligned size of 1 means
that it is aligned on a byte boundary, 4 means it is aligned on a 32 bit boundary.

.classinfo Property

.classinfo provides information about the dynamic type of a class object.

It returns a reference to type object.TypeInfo_Class.

.classinfo applied to an interface gives the information for the interface, not the class it might
be an instance of.

User Defined Properties

User defined properties can be created using Property Functions.

Chapter 8

Attributes

AttributeSpecifier:
Attribute

Attribute DeclarationBlock

Attribute:
Linkagedttribute
Aligndtiribute

Deprecateddttribute
Visibilitydttribute

Pragma
static
extern
abstract
final
override
synchronized
auto
scope
const
immutable
inout
shared
__gshared
Property
nothrow

123

124 CHAPTER 8. ATTRIBUTES

pure
ref
return

Property:
@ Propertyldentifier
UserDefineddttribute

Propertyldentifier:
property
safe
trusted
system
disable
nogc

DeclarationBlock:
DeclDef
{ DeclDefsp; }

Attributes are a way to modify one or more declarations. The general forms are:

attribute declaration; // affects the declaration

attribute: // affects all declarations until the end of
// the current scope
declaration;
declaration;

attribute { // affects all declarations in the block
declaration;
declaration;

125

Linkage Attribute

LinkageAttribute:
extern (LinkageType)
extern (C++, IdentifierList)

LinkageType:
C
C++
D
Windows
Pascal
System
Objective-C

D provides an easy way to call C functions and operating system API functions, as compatibility
with both is essential. The LinkageType is case sensitive, and is meant to be extensible by the
implementation (they are not keywords). C and D must be supplied, the others are what makes
sense for the implementation. C++ offers limited compatibility with C++. Objective-C offers
limited compatibility with Objective-C, see the Interfacing to Objective-C documentation for more
information. System is the same as Windows on Windows platforms, and C on other platforms.
Implementation Note: for Win32 platforms, Windows and Pascal should exist.

C function calling conventions are specified by:

extern (C):
int foo(); // call foo() with C conventions

D conventions are:
extern (D):
Windows API conventions are:

extern (Windows):
void *VirtualAlloc(
void *1pAddress,
uint dwSize,
uint flAllocationType,
uint flProtect

126 CHAPTER 8. ATTRIBUTES

The Windows convention is distinct from the C convention only on Win32 platforms, where it
is equivalent to the stdcall convention.
Note that a lone extern declaration is used as a storage class.

C—+-+ Namespaces

The linkage form extern (C++, IdentifierList) creates C++ declarations that reside in C++
namespaces. The IdentifierList specifies the namespaces.

extern (C++, N) { void foo(); }

refers to the C++ declaration:
namespace N { void foo(); }
and can be referred to with or without qualification:

foo();
N.foo();

Namespaces create a new named scope that is imported into its enclosing scope.
extern (C++, N) { void foo(); void bar(); }
extern (C++, M) { void foo(); }

bar(); // ok
foo(); // error - N.foo() or M.foo() 7
M.foo(); // ok

Multiple identifiers in the IdentifierList create nested namespaces:

extern (C++, N.M) { extern (C++) { extern (C++, R) { void foo(); } } }
N.M.R.foo();

refers to the C++ declaration:
namespace N { namespace M { namespace R { void foo(); } } }

align Attribute

AlignAttribute:
align
align (AssignEzpression)

Specifies the alignment of:

1. variables

127

struct fields
union fields
class fields

AN o o

struct, union, and class types

align by itself sets it to the default, which matches the default member alignment of the
companion C compiler.

struct S
{
align:
byte a; // placed at offset 0
int b; // placed at offset 4

long c; // placed at offset 8

auto sz = S.sizeof; // 16

AssignFEzxpression specifies the alignment which matches the behavior of the companion C com-
piler when non-default alignments are used. It must be a positive power of 2.
A value of 1 means that no alignment is done; fields are packed together.

struct S
{
align (1):
byte a; // placed at offset 0
int b; // placed at offset 1

long ¢; // placed at offset 5

auto sz = S.sizeof; // 16

The alignment for the fields of an aggregate does not affect the alignment of the aggregate itself
- that is affected by the alignment setting outside of the aggregate.

align (2) struct S

{
align (1):
byte a; // placed at offset 0
int b; // placed at offset 1

long c; // placed at offset 5

128 CHAPTER 8. ATTRIBUTES

auto sz = S.sizeof; // 14
Setting the alignment of a field aligns it to that power of 2, regardless of the size of the field.

struct 8
{
align (4):
byte a; // placed at offset 0
byte b; // placed at offset 4
short c¢; // placed at offset 8

auto sz = S.sizeof; // 12

Do not align references or pointers that were allocated using NewEzpression on boundaries that
are not a multiple of size_t. The garbage collector assumes that pointers and references to gc
allocated objects will be on size_t byte boundaries. If they are not, undefined behavior will result.

The AlignAttribute is reset to the default when entering a function scope or a non-anonymous
struct, union, class, and restored when exiting that scope. It is not inherited from a base class.

deprecated Attribute

DeprecatedAttribute:
deprecated
deprecated (AssignExpression)

It is often necessary to deprecate a feature in a library, yet retain it for backwards compatibility.
Such declarations can be marked as deprecated, which means that the compiler can be instructed
to produce an error if any code refers to deprecated declarations:

deprecated
{
void o0ldFoo();
}
oldFoo(); // Deprecated: function test.oldFoo is deprecated

Optionally a string literal or manifest constant can be used to provide additional information
in the deprecation message.

deprecated("Don’t use bar") void oldBar();
0ldBar(); // Deprecated: function test.oldBar is deprecated - Don’t use bar

129

Calling CTFE-able functions or using manifest constants is also possible.

import std.format;

enum Message = format ("%s and, all ,its members are obsolete'", Foobar.stringof);

deprecated(Message) class Foobar {}

auto f = new Foobar(); // Deprecated: class test.Foobar is deprecated - Foobar /
, and all its members are obsolete

deprecated(format ("%s is alsoobsolete", "This class")) class BarFoo {}

auto bf = new BarFoo(); // Deprecated: class test.BarFoo is deprecated - This ~
 class is also obsolete

Implementation Note: The compiler should have a switch specifying if deprecated should be
ignored, cause a warning, or cause an error during compilation.

Visibility Attribute

VisibilityAttribute:
private
package
package (IdentifierlList)
protected
public
export

Visibility is an attribute that is one of private, package, protected, public or export.

They may be referred to as protection attributes in documents written before DIP22 was im-
plemented.

Symbols with private visibility can only be accessed from within the same module. Private
member functions are implicitly final and cannot be overridden.

package extends private so that package members can be accessed from code in other modules
that are in the same package. If no identifier is provided, this applies to the innermost package
only, or defaults to private if a module is not nested in a package.

package may have an optional parameter, dot-separated identifier list which is resolved as the
qualified package name. If this optional parameter is present, the symbol will be visible by this
package and all its descendants.

protected only applies inside classes (and templates as they can be mixed in) and means that
a symbol can only be seen by members of the same module, or by a derived class. If accessing
a protected instance member through a derived class member function, that member can only be
accessed for the object instance which can be implicitly cast to the same type as ‘this’. protected
module members are illegal.

130 CHAPTER 8. ATTRIBUTES

public means that any code within the executable can see the member. It is the default visibility
attribute.

export means that any code outside the executable can access the member. export is analogous
to exporting definitions from a DLL.

Visibility participates in symbol name lookup.

const Attribute

The const attribute changes the type of the declared symbol from T to const(T), where T is the
type specified (or inferred) for the introduced symbol in the absence of const.

const int foo = 7;

static assert(is(typeof(foo) == const(int)));
const
{

double bar = foo + 6;
}
static assert(is(typeof(bar) == const(double)));
class C
{

const void foo();

const

{

void bar();

+

void baz() const;
}

pragma(msg, typeof(C.foo0)); // const void()

pragma(msg, typeof(C.bar)); // const void()

pragma(msg, typeof(C.baz)); // const void()

static assert(is(typeof(C.foo) == typeof(C.bar)) &&
is(typeof (C.bar) == typeof(C.baz)));

immutable Attribute

The immutable attribute modifies the type from T to immutable(T), the same way as const does.

131

inout Attribute

The inout attribute modifies the type from T to inout(T), the same way as const does.

shared Attribute

The shared attribute modifies the type from T to shared(T), the same way as const does.

__gshared Attribute

By default, non-immutable global declarations reside in thread local storage. When a global variable
is marked with the __gshared attribute, its value is shared across all threads.

int foo; // Each thread has its own exclusive copy of foo.
__gshared int bar; // bar is shared by all threads.

__gshared may also be applied to member variables and local variables. In these cases,
__gshared is equivalent to static, except that the variable is shared by all threads rather than
being thread local.

class Foo
{
__gshared int bar;
}
int foo()
{
__gshared int bar = O;
return bar++; // Not thread safe.
}

Unlike the shared attribute, __gshared provides no safe-guards against data races or other
multi-threaded synchronization issues. It is the responsibility of the programmer to ensure that
access to variables marked __gshared is synchronized correctly.

__gshared is disallowed in safe mode.

@disable Attribute

A reference to a declaration marked with the @disable attribute causes a compile time error. This
can be used to explicitly disallow certain operations or overloads at compile time rather than relying
on generating a runtime error.

@disable void foo() { }

132 CHAPTER 8. ATTRIBUTES

void main()
{

foo(); // error, foo is disabled

Disabling struct no-arg constructor disallows default construction of the struct.
Disabling struct postblit makes the struct not copyable.

@nogc Attribute

@nogc applies to functions, and means that that function does not allocate memory on the GC heap,
either directly such as with NewFEzpression or indirectly through functions it may call, or through
language features such as array concatenation and dynamic closures.

@nogc void foo(char[] a)

{
auto p = new int; // error, operator new allocates
a "= ’c¢’; // error, appending to arrays allocates
bar(); // error, bar() may allocate

}

void bar() { }
@nogc affects the type of the function. An @nogc function is covariant with a non-@nogc function.
void function() fp;

void function() @nogc gp; // pointer to @nogc function

void foo();
@nogc void bar();

void test()

{
fp = &foo; // ok
fp = &bar; // ok, it’s covariant
gp = &foo; // error, not contravariant
gp = &bar; // ok
}

@property Attribute

See Property Functions.

133

nothrow Attribute

See Nothrow Functions.

pure Attribute

See Pure Functions.

ref Attribute

See Ref Functions.

return Attribute

See Return Ref Parameters.

override Attribute

The override attribute applies to virtual functions. It means that the function must override a
function with the same name and parameters in a base class. The override attribute is useful for
catching errors when a base class’s member function gets its parameters changed, and all derived
classes need to have their overriding functions updated.

class Foo
{
int bar();
int abc(int x);
}
class Foo2 : Foo
{
override
{

int bar(char c); // error, no bar(char) in Foo
int abc(int x); // ok

134 CHAPTER 8. ATTRIBUTES

static Attribute

The static attribute applies to functions and data. It means that the declaration does not apply
to a particular instance of an object, but to the type of the object. In other words, it means there
is no this reference. static is ignored when applied to other declarations.

class Foo

{
static int bar() { return 6; }
int foobar() { return 7; }

Foo f = new Foo;

Foo.bar(); // produces 6
Foo.foobar(); // error, no instance of Foo
f.bar(); // produces 6;
f.foobar(); // produces 7;

Static functions are never virtual.

Static data has one instance per thread, not one per object.

Static does not have the additional C meaning of being local to a file. Use the private attribute
in D to achieve that. For example:

module foo;
int x = 3; // x is global
private int y = 4; // y is local to module foo

auto Attribute
The auto attribute is used when there are no other attributes and type inference is desired.

auto i = 6.8; // declare i as a double

scope Attribute

The scope attribute is used for local variables and for class declarations. For class declarations, the
scope attribute creates a scope class. For local declarations, scope implements the RAII (Resource
Acquisition Is Initialization) protocol. This means that the destructor for an object is automatically
called when the reference to it goes out of scope. The destructor is called even if the scope is exited
via a thrown exception, thus scope is used to guarantee cleanup.

135

If there is more than one scope variable going out of scope at the same point, then the destructors
are called in the reverse order that the variables were constructed.

scope cannot be applied to globals, statics, data members, ref or out parameters. Arrays of
scopes are not allowed, and scope function return values are not allowed. Assignment to a scope,
other than initialization, is not allowed. Rationale: These restrictions may get relaxed in the
future if a compelling reason to appears.

abstract Attribute

An abstract member function must be overridden by a derived class. Only virtual member functions
may be declared abstract; non-virtual member functions and free-standing functions cannot be
declared abstract.

Classes become abstract if any of its virtual member functions are declared abstract or if they
are defined within an abstract attribute. Note that an abstract class may also contain non-virtual
member functions.

Classes defined within an abstract attribute or with abstract member functions cannot be in-
stantiated directly. They can only be instantiated as a base class of another, non-abstract, class.

Member functions declared as abstract can still have function bodies. This is so that even
though they must be overridden, they can still provide ‘base class functionality’, e.g. through
super.foo() in a derived class. Note that the class is still abstract and cannot be instantiated
directly.

User Defined Attributes

User Defined Attributes (UDA) are compile time expressions that can be attached to a declaration.
These attributes can then be queried, extracted, and manipulated at compile time. There is no
runtime component to them.

Grammatically, a UDA is a StorageClass:

UserDefinedAttribute:

(ArgumentList)

Q@ Identifier

@ Identifier (ArqumentList.p;)
(C]

(C]

@

Templatelnstance
Templatelnstance (ArgumentListp;)

And looks like:

@(3) int a;
@("string", 7) int b;

136 CHAPTER 8. ATTRIBUTES

enum Foo;
Q@Foo int c;

struct Bar

{

int x;

@Bar(3) int d;
If there are multiple UDAs in scope for a declaration, they are concatenated:

e(1)

{
Q(2) int a; // has UDA’s (1, 2)
@("string") int b; // has UDA’s (1, "string")

UDA’s can be extracted into an expression tuple using __traits:

@(’c’) string s;
pragma(msg, __traits(getAttributes, s)); // prints tuple(’c’)

If there are no user defined attributes for the symbol, an empty tuple is returned. The expression
tuple can be turned into a manipulatable tuple:

template Tuple (T...)
{
alias Tuple = T;

enum EEE = 7;
@("hello") struct SSS { }
@(3) { ©(4) Q@EEE @SSS int foo; }

alias TP = Tuple!(__traits(getAttributes, foo0));

pragma(msg, TP); // prints tuple(3, 4, 7, (SSS))
pragma(msg, TP[2]); // prints 7
Of course the tuple types can be used to declare things:

TP[3] a; // a is declared as an SSS

137

The attribute of the type name is not the same as the attribute of the variable:
pragma(msg, __traits(getAttributes, typeof(a))); // prints tuple("hello")

Of course, the real value of UDA’s is to be able to create user defined types with specific values.
Having attribute values of basic types does not scale. The attribute tuples can be manipulated like
any other tuple, and can be passed as the argument list to a template.

Whether the attributes are values or types is up to the user, and whether later attributes
accumulate or override earlier ones is also up to how the user interprets them.

Chapter 9

Pragmas

Pragma:
pragma (Identifier)
pragma (Identifier , ArgumentList)

Pragmas are a way to pass special information to the compiler and to add vendor specific
extensions to D. Pragmas can be used by themselves terminated with a ‘;’, they can influence a
statement, a block of statements, a declaration, or a block of declarations.

Pragmas can appear as either declarations, Pragma DeclarationBlock, or as statements, Prag-
maStatement.

pragma(ident) ; // just by itself
pragma(ident) declaration; // influence one declaration
pragma(ident): // influence subsequent declarations
declaration;
declaration;
pragma(ident) // influence block of declarations
{

declaration;
declaration;

pragma(ident) statement; // influence one statement

139

140 CHAPTER 9. PRAGMAS

pragma(ident) // influence block of statements
{

statement;

statement;

The kind of pragma it is determined by the Identifier. ExpressionList is a comma-separated
list of AssignFExpressions. The AssignExpressions must be parsable as expressions, but what they
mean semantically is up to the individual pragma semantics.

Predefined Pragmas
All implementations must support these, even if by just ignoring them:

e pragma inline
pragma lib

[
e pragma mangle
e pragma msg
[]

pragma startaddress

inline Affects whether functions are inlined or not. If at the declaration level, it affects the
functions declared in the block it controls. If inside a function, it affects the function it is
enclosed by. If there are multiple pragma inlines in a function, the lexically last one takes
effect.

It takes three forms:

1. pragma(inline)

Sets the behavior to match the default behavior set by the compiler switch -inline.
2. pragma(inline, false)

Functions are never inlined.
3. pragma(inline, true)

If a function cannot be inlined with the -inline switch, an error message is issued. This is
expected to be improved in the future to causing functions to always be inlined regardless
of compiler switch settings. Whether a compiler can inline a particular function or not
is implementation defined.

141

pragma(inline):
int foo(int x) // foo() is never inlined
{

pragma(inline, true);

++x

pragma(inline, false); // supercedes the others
return x + 3;

1ib Inserts a directive in the object file to link in the library specified by the AssignExpression.
The AssignExpressions must be a string literal:

pragma(lib, "foo.lib");

mangle Overrides the default mangling for a symbol. It’s only effective when the symbol is a
function declaration or a variable declaration. For example this allows linking to a symbol
which is a D keyword, which would normally be disallowed as a symbol name:

pragma(mangle, "body")
extern(C) void body_func();

msg Constructs a message from the arguments and prints to the standard error stream while
compiling:

pragma(msg, "compiling...", 1, 1.0);
startaddress Puts a directive into the object file saying that the function specified in the first

argument will be the start address for the program:

void foo() { ... %}
pragma(startaddress, foo);

This is not normally used for application level programming, but is for specialized systems
work. For applications code, the start address is taken care of by the runtime library.

Vendor Specific Pragmas

Vendor specific pragma Identifiers can be defined if they are prefixed by the vendor’s trademarked
name, in a similar manner to version identifiers:

pragma(DigitalMars_funky_extension) { ... }

Compilers must diagnose an error for unrecognized Pragmas, even if they are vendor specific
ones. This implies that vendor specific pragmas should be wrapped in version statements:

142 CHAPTER 9. PRAGMAS

version (DigitalMars)

{
pragma(DigitalMars_funky_extension)

{ ...}

Chapter 10

Expressions

C and C++ programmers will find the D expressions very familiar, with a few interesting additions.
Expressions are used to compute values with a resulting type. These values can then be assigned,
tested, or ignored. Expressions can also have side effects.

Order Of Evaluation

Binary expressions and function arguments are evaluated in strictly left-to-right order. This is
similar to Java but different to C and C++, where the evaluation order is unspecified. Thus, the
following code is valid and well defined.

import std.conv;

int i = 0;

(i = 2) = ++1 * i++ + i,

assert(i == 13); // left to right evaluation of side effects
assert(text(++i, ++i) == "1415"); // left to right evaluation of arguments

But even though the order of evaluation is well defined, writing code that depends on it is rarely
recommended. Note that dmd currently does not comply with left to right evaluation of
function arguments and AssignExpression.

Expressions

Expression:
CommaEzpression

CommaExpression:
AssignExpression

143

144

dssignExpression , CommaExpression

CHAPTER 10. EXPRESSIONS

The left operand of the , is evaluated, then the right operand is evaluated. The type of the
expression is the type of the right operand, and the result is the result of the right operand.

Assign Expressions

AssignExpression:

ConditionalExpression
ConditionalExpression
ConditionalExpression
ConditionalExzpression
ConditionalExzpression
ConditionalExpression
ConditionalExpression
ConditionalExpression
ConditionalExpression
ConditionalExpression
ConditionalExpression
ConditionalExpression
ConditionalEzpression
ConditionalExpression
ConditionalExzpression

= AssignEzpression
+= AssignEzpression
-= AssignExpression
*= AssignExpression
= AssignExzpression

%= AssignExpression
&= AssignExzpression
=| AssignEzpression
~= AssignExpression
= AssignExzpression
<<= AssignExzpression
>>= AssignExpression
>>>= AssignExzpression
~~= AssignExpression

The right operand is implicitly converted to the type of the left operand, and assigned to it.
The result type is the type of the left operand, and the result value is the value of the left operand
after the assignment.

The left operand must be an lvalue.

Assignment Operator Expressions

Assignment operator expressions, such as:

aop=b

a

are semantically equivalent to:

cast(typeof(a)) (a op b)

except that:

145

e operand a is only evaluated once
e overloading op uses a different function than overloading op= does
e the left operand of >>>= does not undergo integral promotions before shifting

Conditional Expressions

ConditionalExpression:
OrOrEzpression
OrOrEzpresstion 7 Ezpression : ConditionalErpression

The first expression is converted to bool, and is evaluated.

If it is true, then the second expression is evaluated, and its result is the result of the conditional
expression.

If it is false, then the third expression is evaluated, and its result is the result of the conditional
expression.

If either the second or third expressions are of type void, then the resulting type is voidv
& . Otherwise, the second and third expressions are implicitly converted to a common type which
becomes the result type of the conditional expression.

OrOr Expressions

OrOrExpression:
AndAndEzpression
OrOrEzpression || AndAndEzpression

The result type of an OrOrEzxpression is bool, unless the right operand has type void, when
the result is type void.

The OrOrEzpression evaluates its left operand.

If the left operand, converted to type bool, evaluates to true, then the right operand is not
evaluated. If the result type of the OrOrEzxpression is bool then the result of the expression is
true.

If the left operand is false, then the right operand is evaluated. If the result type of the
OrOrExpression is bool then the result of the expression is the right operand converted to type
bool.

AndAnd Expressions

AndAndExpression:
OrEzpression

146 CHAPTER 10. EXPRESSIONS

AndAndExpression && OrExpression

The result type of an AndAndFExpression is bool, unless the right operand has type void, when
the result is type void.

The AndAndExpression evaluates its left operand.

If the left operand, converted to type bool, evaluates to false, then the right operand is not
evaluated. If the result type of the AndAndEzxpression is bool then the result of the expression is
false.

If the left operand is true, then the right operand is evaluated. If the result type of the
AndAndExpression is bool then the result of the expression is the right operand converted to type
bool.

Bitwise Expressions

Bit wise expressions perform a bitwise operation on their operands. Their operands must be integral
types. First, the default integral promotions are done. Then, the bitwise operation is done.

Or Expressions

OrExpression:
XorEzpression
OrEzpression | XorExpression

The operands are OR’d together.

Xor Expressions

XorExpression:
AndEzpression
XorEzpression ~ AndExpression

The operands are XOR’d together.

And Expressions

AndExpression:
CmpEzxpression
AndEzpression & CmpExpression

147

The operands are AND’d together.

Compare Expressions

CmpExpression:
ShiftExpression
EqualEzpression
IdentityEzpression
RelEzpression
InExpression

Equality Expressions

EqualExpression:
ShiftEzpression == ShiftEzpression
ShiftEzpression ‘= ShiftExpression

Equality expressions compare the two operands for equality (==) or inequality (!'=). The type
of the result is bool. The operands go through the usual conversions to bring them to a common
type before comparison.

If they are integral values or pointers, equality is defined as the bit pattern of the type matches
exactly.

Equality for floating point types is more complicated. -0 and +0 compare as equal. If either or
both operands are NAN, then both the == returns false and != returns true. Otherwise, the bit
patterns are compared for equality.

For complex numbers, equality is defined as equivalent to:

Xx.re == y.re && x.im == y.im
and inequality is defined as equivalent to:
x.re != y.re || x.im !'= y.im

Equality for struct objects means the logical product of all equality results of the corresponding
object fields. If all struct fields use bitwise equality, the whole struct equality could be optimized
to one memory comparison operation (the existence of alignment holes in the objects is accounted
for, usually by setting them all to 0 upon initialization).

For class and struct objects, the expression (a == b) is rewritten as a.opEquals(b), and (av
 != Db) is rewritten as !'a.opEquals(Db).

For class objects, the == and != operators are intended to compare the contents of the objects,
however an appropriate opEquals override must be defined for this to work. The default opEquals

148 CHAPTER 10. EXPRESSIONS

provided by the root Object class is equivalent to the is operator. Comparing against null is
invalid, as null has no contents. Use the is and !is operators instead.

class C;
Cc;
if (¢ == null) // error

if (¢ is null) // ok

For static and dynamic arrays, equality is defined as the lengths of the arrays matching, and all
the elements are equal.

Identity Expressions

IdentityExpression:
ShiftExzpression is ShiftExpression
ShiftEzpresstion 'is ShiftExpression

The is compares for identity. To compare for nonidentity, use el !'is e2. The type of the
result is bool. The operands go through the usual conversions to bring them to a common type
before comparison.

For class objects, identity is defined as the object references are for the same object. Null class
objects can be compared with is.

For struct objects and floating point values, identity is defined as the bits in the operands being
identical.

For static and dynamic arrays, identity is defined as referring to the same array elements and
the same number of elements.

For other operand types, identity is defined as being the same as equality.

The identity operator is cannot be overloaded.

Relational Expressions

RelExpression:
ShiftExpression < ShiftExpression
ShiftEzpression <= ShiftEzpression
ShiftExpression > ShiftExzpression
ShiftExzpression >= ShiftEzpression
ShiftExpression !<>= ShiftErpression
ShiftExpression <> ShiftExpression
ShiftExpression <> ShiftEzpression

149

ShiftExzpression <>= ShiftEzpression
ShiftExpression !> ShiftEzpression
ShiftExpression !'>= ShiftEzpression
ShiftExpression !'< ShiftEzpression
ShiftExpression !<= ShiftExpression

First, the integral promotions are done on the operands. The result type of a relational expres-
sion is bool.

For class objects, the result of Object.opCmp() forms the left operand, and 0 forms the right
operand. The result of the relational expression (ol op 02) is:

(o1.0pCmp(02) op 0)

It is an error to compare objects if one is null.

For static and dynamic arrays, the result of the relational op is the result of the operator applied
to the first non-equal element of the array. If two arrays compare equal, but are of different lengths,
the shorter array compares as "less" than the longer array.

Integer comparisons

Integer comparisons happen when both operands are integral types.

Integer comparison operators

Operator Relation

< less

> greater

<= less or equal

>= greater or equal
== equal

1= not equal

It is an error to have one operand be signed and the other unsigned for a <, <=, > or >= expression.
Use casts to make both operands signed or both operands unsigned.

Floating point comparisons

If one or both operands are floating point, then a floating point comparison is performed.

Useful floating point operations must take into account NAN values. In particular, a relational
operator can have NAN operands. The result of a relational operation on float values is less, greater,
equal, or unordered (unordered means either or both of the operands is a NAN). That means there
are 14 possible comparison conditions to test for:

150

CHAPTER 10. EXPRESSIONS

Floating point comparison operators

Operator Greater Less FEqual Unordered Exception Relation

== F F T F no equal

1= T T F T no unordered, less, or greater

> T F F F yes greater

>= T F T F yes greater or equal

< F T F F yes less

<= F T T F yes less or equal

1<>= F F F T no unordered

<> T T F F yes less or greater

<>= T T T F yes less, equal, or greater

I<= T F F T no unordered or greater

1< T F T T no unordered, greater, or equal

1>= F T F T no unordered or less

> F T T T no unordered, less, or equal

1<> F F T T no unordered or equal
Notes:

1. For floating point comparison operators, (a 'op b) is not the same as ! (a op b).

2. "Unordered" means one or both of the operands is a NAN.

3. "Exception" means the Invalid Exception is raised if one of the operands is a NAN. It does
not mean an exception is thrown. The Invalid Exception can be checked using the functions

in core.stdc.fenv.

Class comparisons

For class objects, the relational operators compare the contents of the objects. Therefore, comparing

against null is invalid, as null has no contents.

class C;
C c;
if (¢ < null) // error

In Expressions

InExpression:
ShiftEzpression in ShiftExzpression
ShiftEzpresston 'in ShiftExpression

151

An associative array can be tested to see if an element is in the array:

int fool[char[]];

if ("hello" in foo)

The in expression has the same precedence as the relational expressions <, <=, etc. The return
value of the InFxpression is null if the element is not in the array; if it is in the array it is a pointer
to the element.

The !in expression is the logical negation of the in operation.

Shift Expressions

ShiftExpression:
AddExpression
ShiftEzpression << AddExpression
ShiftExpression >> AddExpression
ShiftExpression >>> AddExpression

The operands must be integral types, and undergo the usual integral promotions. The result
type is the type of the left operand after the promotions. The result value is the result of shifting
the bits by the right operand’s value.

<< is a left shift. >> is a signed right shift. >>> is an unsigned right shift.

It’s illegal to shift by the same or more bits than the size of the quantity being shifted:

int c;
auto x = ¢ << 33; // error

Add Expressions

AddExpression:
MulExzpression
AddExpression + MulExpression
AddExzpression - MulExzpression
CatEzpression

152 CHAPTER 10. EXPRESSIONS

If the operands are of integral types, they undergo integral promotions, and then are brought
to a common type using the usual arithmetic conversions.

If either operand is a floating point type, the other is implicitly converted to floating point and
they are brought to a common type via the usual arithmetic conversions.

If the operator is + or -, and the first operand is a pointer, and the second is an integral type,
the resulting type is the type of the first operand, and the resulting value is the pointer plus (or
minus) the second operand multiplied by the size of the type pointed to by the first operand.

If the second operand is a pointer, and the first is an integral type, and the operator is +, the
operands are reversed and the pointer arithmetic just described is applied.

If both operands are pointers, and the operator is +, then it is illegal.

If both operands are pointers, and the operator is -, the pointers are subtracted and the result
is divided by the size of the type pointed to by the operands. It is an error if the pointers point to
different types. The type of the result is ptrdiff_t.

If both operands are of integral types and an overflow or underflow occurs in the computation,
wrapping will happen. That is, uint.max + 1 == uint.min and uint.min - 1 == uint.max.

Add expressions for floating point operands are not associative.

Cat Expressions

CatExpression:
AddEzpresstion = MulExzpression

A CatEzpression concatenates arrays, producing a dynamic array with the result. The arrays
must be arrays of the same element type. If one operand is an array and the other is of that
array’s element type, that element is converted to an array of length 1 of that element, and then
the concatenation is performed.

Mul Expressions

MulExpression:
UnaryEzpression
MulEzpression * UnaryEzpression
MulEzpression / UnaryEzpression
MulExzpression % UnaryEzpression

The operands must be arithmetic types. They undergo integral promotions, and then are
brought to a common type using the usual arithmetic conversions.

For integral operands, the *, /, and % correspond to multiply, divide, and modulus operations.
For multiply, overflows are ignored and simply chopped to fit into the integral type.

153

For integral operands of the / and % operators, the quotient rounds towards zero and the
remainder has the same sign as the dividend. If the divisor is zero, an Exception is thrown.

For floating point operands, the * and / operations correspond to the IEEE 754 floating point
equivalents. the IEEE 754 remainder. For example, 15.0 for IEEE 754, remainder(15.0,10.0) ==
-5.0.

Mul expressions for floating point operands are not associative.

Unary Expressions

UnaryExpression:
& UnaryEzpression
++ UnaryEzpression
-- UnaryEzpression
* UnaryEzpression
- UnaryEzpression

+

UnaryEzpression
UnaryEzpression
ComplementEzpression

(Type) . Identifier

(Type) . Templatelnstance
DeleteExpression
CastEzpression
PowEzpression

Complement Expressions

ComplementExpression:
~ UnaryEzpression

ComplementEzxpressions work on integral types (except bool). All the bits in the value are
complemented.

Note: unlike in C and C++, the usual integral promotions are not performed prior to the
complement operation.

New Expressions

NewExpression:
new Allocatordrguments pz Type
NewEzpressionWithdrgs

154 CHAPTER 10. EXPRESSIONS

NewExpressionWithArgs:
new Allocatordrguments.p; Type [AssignEzpression]
new Allocatordrguments .y Type (ArgumentList.p)
NewAnonClassExpression

AllocatorArguments:
(ArgumentListop)

ArgumentList:
AssignExpression
dssignExpression ,
AssignExpression , Arqumentlist

NewEzpressions are used to allocate memory on the garbage collected heap (default) or using a
class or struct specific allocator.

To allocate multidimensional arrays, the declaration reads in the same order as the prefix array
declaration order.

char[1[] foo; // dynamic array of strings

foo = new char[]1[30]; // allocate array of 30 strings
The above allocation can also be written as:

foo = new char[1[1(30); // allocate array of 30 strings
To allocate the nested arrays, multiple arguments can be used:

int[J[1[] bar;

bar = new int[J[]1[1(5, 20, 30);
Which is equivalent to:

bar = new int[][][5];
foreach (ref a; bar)

{
a = new int[][20];
foreach (ref b; a)

155

b = new int[30];

If there is a new (ArgumentList), then those arguments are passed to the class or struct
specific allocator function after the size argument.

If a NewFEzxpression is used as an initializer for a function local variable with scope storage class,
and the ArgumentList to new is empty, then the instance is allocated on the stack rather than the
heap or using the class specific allocator.

Delete Expressions

DeleteExpression:
delete UnaryExpression

If the UnaryEzxpression is a class object reference, and there is a destructor for that class, the
destructor is called for that object instance.

Next, if the UnaryFExpression is a class object reference, or a pointer to a struct instance, and
the class or struct has overloaded operator delete, then that operator delete is called for that class
object instance or struct instance.

Otherwise, the garbage collector is called to immediately free the memory allocated for the class
instance or struct instance. If the garbage collector was not used to allocate the memory for the
instance, undefined behavior will result.

If the UnaryFxzpression is a pointer or a dynamic array, the garbage collector is called to imme-
diately release the memory. If the garbage collector was not used to allocate the memory for the
instance, undefined behavior will result.

The pointer, dynamic array, or reference is set to null after the delete is performed. Any
attempt to reference the data after the deletion via another reference to it will result in undefined
behavior.

If UnaryEzpression is a variable allocated on the stack, the class destructor (if any) is called for
that instance. Neither the garbage collector nor any class deallocator is called.

Cast Expressions

CastExpression:
cast (Type) UnaryEzpression
cast (TypeCtors,p;) UnaryExpression

A CastExpression converts the UnaryEzpression to Type.

156 CHAPTER 10. EXPRESSIONS

cast(foo) -p; // cast (-p) to type foo
(foo) - p; // subtract p from foo

Any casting of a class reference to a derived class reference is done with a runtime check to make
sure it really is a downcast. null is the result if it isn’t.
Note: This is equivalent to the behavior of the dynamic_cast operator in C++.

class A { ... }
class B : A { ...}

void test(A a, B b)

{

B bx = a; // error, need cast

B bx = cast(B) a; // bx is null if a is not a B

A ax = b; // no cast needed

A ax = cast(A) b; // no runtime check needed for upcast
}

In order to determine if an object o is an instance of a class B use a cast:

if (cast(B) o)

{
// o is an instance of B
}
else
{
// o is not an instance of B
}

Casting a pointer type to and from a class type is done as a type paint (i.e. a reinterpret cast).

Casting a dynamic array to another dynamic array is done only if the array lengths multiplied
by the element sizes match. The cast is done as a type paint, with the array length adjusted to
match any change in element size. If there’s not a match, a runtime error is generated.

import std.stdio;

int main()

{
byte[l a = [1,2,3];
auto b = cast(int[l)a; // runtime array cast misalignment

int[] ¢ = [1, 2, 3];
auto d = cast(bytell)c; // ok

// prints:

// [1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, O]
writeln(d);

return O;

157

Casting a floating point literal from one type to another changes its type, but internally it is
retained at full precision for the purposes of constant folding.

void test()

{

real a = 3.40483L;

real b;

b = 3.40483; // literal is not truncated to double precision
assert(a == b);

assert(a == 3.40483);

assert(a == 3.40483L);

assert(a == 3.40483F);

double d = 3.40483; // truncate literal when assigned to variable

assert(d !'= a); // so it is no longer the same
const double x = 3.40483; // assignment to const is not
assert(x == a); // truncated if the initializer is visible

Casting a floating point value to an integral type is the equivalent of converting to an integer
using truncation.

void main()

{
int a = cast(int) 0.8f;
assert(a == 0);
long b = cast(long) 1.5;
assert(b == 1L);
long ¢ = cast(long) -1.5;
assert(c == -1);
}
Casting a value v to a struct S, when value is not a struct of the same type, is equivalent to:
S(v)

Casting to a CastQual replaces the qualifiers to the type of the UnaryFExzpression.

shared int x;
assert (is(typeof (cast(const)x) == const int));

158 CHAPTER 10. EXPRESSIONS

Casting with no Type or CastQual removes any top level const, immutable, shared or inout
type modifiers from the type of the UnaryFExpression.

shared int x;
assert(is(typeof(cast()x) == int));

Casting an expression to void type is allowed to mark that the result is unused. On Ezpres-
stonStatement, it could be used properly to avoid "has no effect" error.

void foo(lazy void exp) {}

void main()

{
foo(10); // NG - has no effect in expression ’10’
foo(cast(void)10); // OK

Pow Expressions

PowExpression:
PostfizEzpression
PostfizExpression ~~ UnaryEzpression

PowEzxpression raises its left operand to the power of its right operand.

Postfix Expressions

PostfixExpression:
PrimaryEzpression
PostfizEzrpression . Identifier
PostfixzExpression . Templatelnstance
PostfizEzrpression . NewErpression
PostfixzExpression ++
PostfizEzrpression --
PostfizExpression (ArgumentList .)
TypeCtors,p; BasicType (Argumentlist.p;)
IndexEzpression
SliceExzpression

159

Index Expressions

IndexExpression:
PostfizExpression [Argumentlist]

PostfizFExpression is evaluated.

If PostfizExpression is an expression of type static array or dynamic array, the symbol $ is set
to be the the number of elements in the array.

If PostfirExpression is an ExpressionTuple, the symbol $ is set to be the the number of elements
in the tuple.

A new declaration scope is created for the evaluation of the ArgumentList and $ appears in that
scope only.

If PostfixEzpression is an EzpressionTuple, then the ArgumentList must consist of only one
argument, and that must be statically evaluatable to an integral constant. That integral constant n
then selects the nth expression in the FxpressionTuple, which is the result of the IndexFExpression.
It is an error if n is out of bounds of the FxpressionTuple.

Slice Expressions

SliceExpression:
PostfizEzpression []
PostfizExpression [Slice ,opt]

Slice:
AssignExpression
AssignExpression , Slice
AssignExpression .. AssignExrpression
AssignExpression .. AssignExpression , Slice

PostfizExpression is evaluated. if PostfixExpression is an expression of type static array or
dynamic array, the special variable $ is declared and set to be the length of the array. A new
declaration scope is created for the evaluation of the AssignFxpression..AssignExpression and $
appears in that scope only.

The first AssignExpression is taken to be the inclusive lower bound of the slice, and the second
AssignExpression is the exclusive upper bound. The result of the expression is a slice of the
PostfirExpression array.

If the [] form is used, the slice is of the entire array.

The type of the slice is a dynamic array of the element type of the PostfixExpression.

A SliceExpression is not a modifiable lvalue.

160 CHAPTER 10. EXPRESSIONS
If the slice bounds can be known at compile time, the slice expression is implicitly convertible
to an lvalue of static array. For example:

arrfa .. b] // typed T[]

If both a and b are integers (may be constant-folded), the slice expression can be converted to
a static array type T[b - al.

void foo(int[2] a)

{

assert(a == [2, 3]);
}
void bar(ref int[2] a)
{

assert(a == [2, 3]);

al0] = 4;

al1] = 5;

assert(a == [4, 5]);
}

void baz(int[3] a) {}
void main()
{

int[] arr = [1, 2, 3];

foo(arr[1l .. 31);
assert(arr == [1, 2, 3]);

bar(arr[1 .. 3]);
assert(arr == [1, 4, 5]);

//baz(arr[1 .. 3]); // cannot match length
}

Following forms of slice expression can be convertible to a static array type:

eAn expression that contains no side effects.

a, blntegers (that may be constant-folded).

161

Form The length calculated at compile time

arr[] The compile time length of arr if it’s known.
arr[a .. bl b - a

arr[\textit{e}-a .. \textit{el}] a

arr[\textit{e} .. \textit{e}+Db] b

arr[\textit{e}-a .. \textit{e}+b] a + b

arr[\textit{e}+a .. \textit{e}+b] b - aif a <=b

arr[\textit{e}-a .. \textit{e}-b] a - bifa>=0b
If PostfizFExpression is an FxpressionTuple, then the result of the slice is a new FxpressionTuple
formed from the upper and lower bounds, which must statically evaluate to integral constants. It
is an error if those bounds are out of range.

Primary Expressions

PrimaryExpression:

Identifier
Identifier
Templatelnstance
Templatelnstance

this
super
null
true
false
$
IntegerLiteral
FloatLiteral
CharacterLiteral
Stringliterals
Arrayliteral
AssocArrayliteral
FunctionLiteral
AssertExpression
MizinEzpression
ImportEzpression
NewEzpressionWithAdrgs
BasicTypeX . Identifier
BasicTypeX (ArgumentList,p)
TypeCtor (Type) . Identifier
TypeCtor (Type) (ArgumentList.p;)

162 CHAPTER 10. EXPRESSIONS

Typeof
TypeidExzpression
IsExpression

(Ezpression)
TrattsEzpression
SpecialKeyword

Jdentifier

Identifier is looked up at module scope, rather than the current lexically nested scope.

this

Within a non-static member function, this resolves to a reference to the object for which the
function was called. If the object is an instance of a struct, this will be a pointer to that instance.
If a member function is called with an explicit reference to typeof (this), a non-virtual call is
made:

class A

{
char get() { return ’A’; }

char foo() { return typeof(this).get(); }
char bar() { return this.get(); }

}
class B : A
{
override char get() { return ’B’; }
}
void main()
{
B b = new B();
assert(b.foo() == "A’);
assert(b.bar() == ’B’);
}

Assignment to this is not allowed.

163

super

super is identical to this, except that it is cast to this’s base class. It is an error if there is no
base class. It is an error to use super within a struct member function. (Only class Object has no
base class.) If a member function is called with an explicit reference to super, a non-virtual call is
made.

Assignment to super is not allowed.

null

null represents the null value for pointers, pointers to functions, delegates, dynamic arrays, asso-
ciative arrays, and class objects. If it has not already been cast to a type, it is given the singular
type typeof (null) and it is an exact conversion to convert it to the null value for pointers, pointers
to functions, delegates, etc. After it is cast to a type, such conversions are implicit, but no longer
exact.

true, false

These are of type bool and when cast to another integral type become the values 1 and 0, respec-
tively.

Character Literals

Character literals are single characters and resolve to one of type char, wchar, or dchar. If the
literal is a \u escape sequence, it resolves to type wchar. If the literal is a \U escape sequence, it
resolves to type dchar. Otherwise, it resolves to the type with the smallest size it will fit into.

String Literals

Stringliterals:
Stringliteral
Stringliterals Stringliteral

String literals can implicitly convert to any of the following types, they have equal weight:
immutable (char) *
immutable (wchar) *
immutable (dchar) *
immutable (char) []
immutable (wchar) []
immutable (dchar) []

164 CHAPTER 10. EXPRESSIONS

By default, a string literal is typed as a dynamic array, but the element count is known at
compile time. So all string literals can be implicitly converted to static array types.

void foo(char[2] a)

{
assert(a == "bc");
}
void bar(ref const char[2] a)
{
assert(a == "bc");
}

void baz(const char[3] a) {}

void main()
{
string str = "abc";
foo(str[l .. 31);
bar(str[l .. 31);
//baz(str[1 .. 3]); // cannot match length
}

String literals have a 0 appended to them, which makes them easy to pass to C or C++ functions
expecting a const char* string. The 0 is not included in the .length property of the string literal.

Array Literals

ArrayLiteral:
[ArgumentList ,p;]

Array literals are a comma-separated list of AssignFExpressions between square brackets [and].
The AssignFxpressions form the elements of a dynamic array, the length of the array is the number
of elements. The common type of the all elements is taken to be the type of the array element, and
all elements are implicitly converted to that type.

auto al = [1,2,3]; // type is int[], with elements 1, 2 and 3
auto a2 = [1u,2,3]; // type is uint[], with elements lu, 2u, and 3u

By default, an array literal is typed as a dynamic array, but the element count is known at
compile time. So all array literals can be implicitly converted to static array types.

void foo(long[2] a)
{

165

assert(a == [2, 3]);

}
void bar(ref long[2] a)
{
assert(a == [2, 3]);
al0] = 4;
al1] = 5;
assert(a == [4, 5]);
}

void baz(const char[3] a) {}

void main()

{
long[] arr = [1, 2, 3];

foo(arr[1 .. 31);
assert(arr == [1, 2, 31);

bar(arr[1 .. 3]);
assert(arr == [1, 4, 5]);

//baz(arr[1 .. 3]); // cannot match length
}

If any of the arguments in the ArgumentList are an ExpressionTuple, then the elements of the
EzxpressionTuple are inserted as arguments in place of the tuple.

Array literals are allocated on the memory managed heap. Thus, they can be returned safely
from functions:

int[] foo()
{
return [1, 2, 3];

When array literals are cast to another array type, each element of the array is cast to the new
element type. When arrays that are not literals are cast, the array is reinterpreted as the new type,
and the length is recomputed:

import std.stdio;

void main()

{

166 CHAPTER 10. EXPRESSIONS

// cast array literal

const short[] ct = cast(short[]) [cast(byte)l, 1];
// this is equivalent with:

// const short[] ct = [cast(short)l, cast(short)1l];
writeln(ct); // writes [1, 1]

// cast other array expression

// --> normal behavior of CastExpression
byte[] arr = [cast(byte)l, cast(byte)l];
short[] rt = cast(short[]) arr;
writeln(rt); // writes [257]

In other words, casting literal expression will change the literal type.

Associative Array Literals

AssocArrayLiteral:
[KeyValuePairs]

KeyValuePairs:
KeylValuePair
KeyValuePair , KeylValuePairs

KeyValuePair:
KeyExzpression : ValueExpression

KeyExpression:
AssignExpression

ValueExpression:
AssignExpression

Associative array literals are a comma-separated list of key : value pairs between square brackets
[and]. The list cannot be empty. The common type of the all keys is taken to be the key type
of the associative array, and all keys are implicitly converted to that type. The common type of

167

the all values is taken to be the value type of the associative array, and all values are implicitly
converted to that type. An AssocArrayLiteral cannot be used to statically initialize anything,.

[21u:"he", 38:"ho", 2:"hi"]l; // type is stringluint],
// with keys 21u, 38u and 2u
// and values "he", "ho", and "hi"

If any of the keys or values in the KeyValuePairs are an FExpressionTuple, then the elements of
the FExpressionTuple are inserted as arguments in place of the tuple.

Function Literals

FunctionLiteral:
function Typeopt Parameterdttributes opy FunctionLiteralBody
delegate Typeopt ParameterMemberAttributes opt FunctionliteralBody
ParameterMemberAttributes FunctionliteralBody
FunctionLiteralBody
Lambda

ParameterAttributes:
Parameters Functiondttributespt

ParameterMemberAttributes:
Parameters MemberFunctionAttributes pt

FunctionLiteralBody:
BlockStatement
FunctionContracts p BodyStatement

FunctionLiterals enable embedding anonymous functions and anonymous delegates directly into
expressions. Type is the return type of the function or delegate, if omitted it is inferred from
any ReturnStatements in the FunctionLiteralBody. (ArgumentList) forms the arguments to the
function. If omitted it defaults to the empty argument list (). The type of a function literal is
pointer to function or pointer to delegate. If the keywords function or delegate are omitted, it is
inferred from whether FunctionLiteralBody is actually accessing to the outer context.

For example:

int function(char c¢) fp; // declare pointer to a function

168 CHAPTER 10. EXPRESSIONS

void test()
{

static int foo(char c) { return 6; }
fp = &foo;
is exactly equivalent to:

int function(char c¢) fp;

void test()

{

fp = function int(char c¢) { return 6;} ;

And:

int abc(int delegate(int i));

void test()

{
int b = 3;
int foo(int c¢) { return 6 + b; }
abc (&foo0) ;

}

is exactly equivalent to:
int abc(int delegate(int i));

void test()

{
int b = 3;

abc(delegate int(int c) { return 6 + b; });

and the following where the return type int and function/delegate are inferred:

int abc(int delegate(int i));
int def(int function(int s));

169

void test()
{
int b = 3;

abc((int ¢) { return 6 + b; }); // inferred to delegate
def((int c¢) { return ¢ *x 2; }); // inferred to function
//def((int c¢) { return ¢ * b; }); // error!
// Because the FunctionLiteralBody accesses b, then the function literal type
// is inferred to delegate. But def cannot receive delegate.

If the type of a function literal can be uniquely determined from its context, the parameter type
inference is possible.

void foo(int function(int) fp);

void test()

{
int function(int) fp = (n) { return n * 2; };
// The type of parameter n is inferred to int.
foo((n) { return n * 2; });
// The type of parameter n is inferred to int.
}

Anonymous delegates can behave like arbitrary statement literals. For example, here an arbi-
trary statement is executed by a loop:

double test()

{
double d = 7.6;
float £ = 2.3;

void loop(int k, int j, void delegate() statement)

{
for (int i = k; i < j; i++)
{
statement () ;
}

170 CHAPTER 10. EXPRESSIONS

loop(5, 100, { d += 1; });
loop(3, 10, { f +=3; });

return d + f;

When comparing with nested functions, the function form is analogous to static or non-nested
functions, and the delegate form is analogous to non-static nested functions. In other words, a
delegate literal can access stack variables in its enclosing function, a function literal cannot.

Lambdas

Lambda:
function Typeopt Parameterdttributes => AssignEzpression
delegate Type,pt ParameterMemberAtiributes => AssignExpression
ParameterMemberAttiributes => AssignExpression
Identifier => AssignExzpression

Lambdas are a shorthand syntax for FunctionLiterals.

1. Just one Identifier is rewritten to Parameters:
(Identifier)

2. The following part => AssignExpression is rewritten to FunctionLiteralBody:
{ return AssignErpression ; }

Example usage:

import std.stdio;

void main()

{
auto 1 = 3;
auto twice = function (int x) => x * 2;
auto square = delegate (int x) => x * Xx;

auto n = 5;
auto mul_n = (int x) => X * n;

writeln(twice(i)); // prints 6
writeln(square(i)); // prints 9
writeln(mul_n(i)); // prints 15

171

Uniform construction syntax for built-in scalar types

The implicit conversions of built-in scalar types can be explicitly represented by using function call
syntax. For example:

auto a = short(1); // implicitly convert an integer literal ’1’ to short
double(a); // implicitly convert a short variable ’a’ to double

auto ¢ = byte(128); // error, 128 cannot be represented in a byte

auto b

If the argument is omitted, it means default construction of the scalar type:

auto a = ushort(); // same as: ushort.init
auto b

wchar () ; // same as: wchar.init
creal(); // same as: creal.init

auto c

Assert Expressions

AssertExpression:
assert (AssignExzpression ,opt)
assert (AssignEzpression , AssignEzpression ,opt)

The assert expression is used to declare conditions that the programmer asserts must hold at
that point in the program if the program logic has been correctly implemented. It can be used both
as a debugging tool and as a way of communicating to the compiler facts about the code that it
may employ to produce more efficient code.

Programs for which AssignFxpression is false are invalid. Subsequent to such a false result, the
program is in an invalid, non-recoverable state.

As a debugging tool, the compiler may insert checks to verify that the condition indeed holds
by evaluating AssignFExpression at runtime. If it evaluates to a non-null class reference, the class
invariant is run. Otherwise, if it evaluates to a non-null pointer to a struct, the struct invariant
is run. Otherwise, if the result is false, an AssertError is thrown. If the result is true, then no
exception is thrown. In this way, if a bug in the code causes the assertion to fail, execution is
aborted, prompting the programmer to fix the problem.

It is implementation defined whether the AssignExpression is evaluated at run time or not.
Programs that rely on side effects of AssignFxpression are invalid.

The result type of an assert expression is void. Asserts are a fundamental part of the Contract
Programming support in D.

The expression assert(0) is a special case; it signifies that it is unreachable code. Either
AssertError is thrown at runtime if it is reachable, or the execution is halted (on the x86 processor,

172 CHAPTER 10. EXPRESSIONS

a HLT instruction can be used to halt execution). The optimization and code generation phases of
compilation may assume that it is unreachable code.

The second AssignExpression, if present, must be implicitly convertible to type const (char) [].
It is evaluated if the result is false, and the string result is appended to the AssertError’s message.

void main()
{

assert(0, "an" ~ " error message");

When compiled and run, it will produce the message:
Error: AssertError Failure test.d(3) an error message

Mixin Expressions

MixinExpression:
mixin (AssignEzpression)

The AssignFxpression must evaluate at compile time to a constant string. The text contents of
the string must be compilable as a valid Ezpression, and is compiled as such.

int foo(int x)

{

return mixin("x +,1") * 7; // same as ((x + 1) * 7)

Import Expressions

ImportExpression:
import (AssignEzpression)

The AssignFxpression must evaluate at compile time to a constant string. The text contents of
the string are interpreted as a file name. The file is read, and the exact contents of the file become
a string literal.

Implementations may restrict the file name in order to avoid directory traversal security vulner-
abilities. A possible restriction might be to disallow any path components in the file name.

Note that by default an import expression will not compile unless you pass one or more paths
via the -J switch. This tells the compiler where it should look for the files to import. This is a
security feature.

173

void foo()

{
// Prints contents of file foo.txt
writeln(import("foo.txt"));

Typeid Expressions

TypeidExpression:
typeid (Type)
typeid (Ezpression)

If Type, returns an instance of class TypeInfo corresponding to Type.

If Ezpression, returns an instance of class TypeInfo corresponding to the type of the Expression.
If the type is a class, it returns the TypeInfo of the dynamic type (i.e. the most derived type). The
Ezxpression is always executed.

class A { }
class B : A {}

void main()

{
writeln(typeid(int)); // int
uint 1i;
writeln(typeid(i++)); // uint
writeln(i); // 1
A a = new B();
writeln(typeid(a)); // B
writeln(typeid(typeof(a))); // A
}
IsExpression
IsExpression:
is (Type)
is (Type : TypeSpecialization)
is (Type == TypeSpecialization)
is (Type : TypeSpectialization , TemplateParameterList)
is (Type == TypeSpecialization , TemplateParameterList)

174 CHAPTER 10. EXPRESSIONS

is (Type Identifier)

Type Identifier : TypeSpecialization)

Type Identifier == TypeSpecialization)

Type Identifier : TypeSpecialization , TemplateParameterList)

Type Identifier == TypeSpecialization , TemplateParameterList)

is
is
is

N AN AN AN A

is

TypeSpecialization:
Type
struct
union
class
interface
enum
function
delegate
super
const
immutable
inout
shared
return
__parameters

IsEzpressions are evaluated at compile time and are used for checking for valid types, comparing
types for equivalence, determining if one type can be implicitly converted to another, and deducing
the subtypes of a type. The result of an IsExpression is an int of type 0 if the condition is not
satisified, 1 if it is.

Type is the type being tested. It must be syntactically correct, but it need not be semantically
correct. If it is not semantically correct, the condition is not satisfied.

Identifier is declared to be an alias of the resulting type if the condition is satisfied. The
Identifier forms can only be used if the IsEzpression appears in a StaticIfCondition.

TypeSpecialization is the type that Type is being compared against.

The forms of the IsExpression are:

1. is (Type) The condition is satisfied if Type is semantically correct (it must be syntactically
correct regardless).

175

alias int func(int); // func is a alias to a function type
void foo()
{

if (is(func([])) // not satisfied because arrays of

// functions are not allowed
writeln("satisfied");
else
writeln("not satisfied");

if (is([101)) // error, [][] is not a syntactically valid type

}

2. is (Type : TypeSpecialization) The condition is satisfied if Type is semantically correct and
it is the same as or can be implicitly converted to TypeSpecialization. TypeSpecialization is
only allowed to be a Type.

alias bar = short;
void foo(bar x)

{
if (is(bar : int)) // satisfied because short can be
// implicitly converted to int
writeln("satisfied");
else
writeln("not satisfied");
}

3. is (Type == TypeSpecialization)
The condition is satisfied if Type is semantically correct and is the same type as TypeSpecial-
1zation.
If TypeSpecialization is one of
struct union class interface enum function delegate const immutable shared
then the condition is satisfied if Type is one of those.

alias bar = short;

void test(bar x)
{
if (is(bar == int)) // not satisfied because short is not
// the same type as int
writeln("satisfied");
else

176

CHAPTER 10. EXPRESSIONS

writeln("not_ satisfied");

}

4. is (Type Identifier) The condition is satisfied if Type is semantically correct. If so, Identifier

is declared to be an alias of Type.

alias bar = short;
void foo(bar x)

{
static if (is(bar T))
alias S =T,
else
alias S = long;
writeln(typeid(S)); // prints "short"
if (is(bar T)) // error, Identifier T form can
// only be in StaticIfConditions
}

is (Type Identifier : TypeSpecialization)

The condition is satisfied if Type is the same as TypeSpecialization, or if Type is a class and
TypeSpecialization is a base class or base interface of it. The Identifier is declared to be
either an alias of the TypeSpecialization or, if TypeSpecialization is dependent on Identifier,
the deduced type.

alias bar = int;
alias abc = longk;
void foo(bar x, abc a)
{
static if (is(bar T : int))
alias S =T,
else
alias S = long;

writeln(typeid(S)); // prints "int"

static if (is(abc U : Ux*))
{
U u;
writeln(typeid(typeof(u))); // prints "long"

177

}

The way the type of Identifier is determined is analogous to the way template parameter
types are determined by Template TypeParameterSpecialization.

. is (Type Identifier == TypeSpecialization)

The condition is satisfied if Type is semantically correct and is the same as TypeSpecialization.
The Identifier is declared to be either an alias of the TypeSpecialization or, if TypeSpecialization
is dependent on Identifier, the deduced type.

If TypeSpecialization is one of struct union class interface enum function delegatey/
 const immutable shared

then the condition is satisfied if Type is one of those. Furthermore, Identifier is set to be an
alias of the type:

keyword alias type for Identifier

struct Type

union Type

class Type

interface Type

super TypeTuple of base classes and interfaces

enum the base type of the enum

function TypeTuple of the function parameter types. For C- and D-style variadic func-
tions, only the non-variadic parameters are included. For typesafe variadic
functions, the ... is ignored.

delegate the function type of the delegate

return the return type of the function, delegate, or function pointer

__parameters the parameter tuple of a function, delegate, or function pointer. This in-
cludes the parameter types, names, and default values.

const Type
immutable Type
shared Type

alias bar = short;
enum E : byte { Emember }
void foo(bar x)
{
static if (is(bar T == int)) // not satisfied, short is not int
alias S = T;
alias U = T; // error, T is not defined

178 CHAPTER 10. EXPRESSIONS

static if (is(E V == enum)) // satisified, E is an enum
Vv, // v is declared to be a byte
}

7. is (Type : TypeSpecialization , TemplateParameterList) is (Type == TypeSpecialization
, TemplateParameterList) is (Type Identifier : TypeSpecialization , TemplateParame-
terList) is (Type Identifier == TypeSpecialization , TemplateParameterList)

More complex types can be pattern matched; the TemplateParameterList declares symbols
based on the parts of the pattern that are matched, analogously to the way implied template
parameters are matched.

import std.stdio, std.typecons;
void main()
{

alias Tup = Tuple!(int, string);
alias AA = long[char[]];

static if (is(Tup : TX!TL, alias TX, TL...))

{
writeln(is(TX!(int, long) == Tuple!(int, long))); // true
writeln(typeid(TL[0])); // int
writeln(typeid(TL[1])); // immutable(char)[]
}
static if (is(AA T : T[U], U : const char[]))
{
writeln(typeid(T)); // long
writeln(typeid(U)); // const char[]
}
static if (is(AA A : A[B], B : int))
{
assert(0); // should not match, as B is not an int
}

static if (is(int[10] W : W[V], int V))
{
writeln(typeid(W)); // int
writeln(V); // 10

179

static if (is(int[10] X : X[Y], int Y : 5))
{
assert(0); // should not match, Y should be 10

Associativity and Commutativity

An implementation may rearrange the evaluation of expressions according to arithmetic associativity
and commutativity rules as long as, within that thread of execution, no observable difference is
possible.

This rule precludes any associative or commutative reordering of floating point expressions.

Chapter 11

Statements

C and C++ programmers will find the D statements very familiar, with a few interesting additions.

Statement:

NonEmptyStatement
ScopeBlockStatement

NoScopeNonEmptyStatement:
NonEmptyStatement
BlockStatement

NoScopeStatement:

NonEmptyStatement
BlockStatement

NonEmptyOrScopeBlockStatement:
NonEmptyStatement
ScopeBlockStatement

NonEmptyStatement:
NonEmptyStatementNoCaseNoDefault
CaseStatement

181

182 CHAPTER 11. STATEMENTS

CaseRangeStatement
DefaultStatement

NonEmptyStatementNoCaseNoDefault:
LabeledStatement
EzpressionStatement
DeclarationStatement
IfStatement
WhileStatement
DoStatement
ForStatement
ForeachStatement
SwitchStatement
FinalSwitchStatement
ContinueStatement
BreakStatement
ReturnStatement
GotoStatement
WithStatement
SynchronizedStatement
TryStatement
ScopeGuardStatement
ThrowStatement
AsmStatement
PragmaStatement
MizinStatement
ForeachRangeStatement
ConditionalStatement
Staticdssert
TemplateMizin
ImportDeclaration

Any ambiguities in the grammar between Statements and Declarations are resolved by the
declarations taking precedence. If a Statement is desired instead, wrapping it in parentheses will
disambiguate it in favor of being a Statement.

183

Scope Statements

ScopeStatement:
NonEmptyStatement
BlockStatement

A new scope for local symbols is introduced for the NonEmptyStatement or BlockStatement.
Even though a new scope is introduced, local symbol declarations cannot shadow (hide) other
local symbol declarations in the same function.

void funcl(int x)

{
int x; // illegal, x shadows parameter x
int y;
{ int y; } // illegal, y shadows enclosing scope’s y
void delegate() dg;
dg = { int y; }; // ok, this y is not in the same function
struct S
{
int y; // ok, this y is a member, not a local
}
{ int z; }
{ int z; } // ok, this z is not shadowing the other z
{ int t; }
{ t++; } // illegal, t is undefined
}

The idea is to avoid bugs in complex functions caused by scoped declarations inadvertently
hiding previous ones. Local names should all be unique within a function.
Scope Block Statements

ScopeBlockStatement:
BlockStatement

184 CHAPTER 11. STATEMENTS

A scope block statement introduces a new scope for the BlockStatement.

Labeled Statements

Statements can be labeled. A label is an identifier that precedes a statement.

LabeledStatement:
Identifier
Identifier : NoScopeStatement
Identifier : Statement

Any statement can be labeled, including empty statements, and so can serve as the target of a
goto statement. Labeled statements can also serve as the target of a break or continue statement.

A label can appear without a following statement at the end of a block.

Labels are in a name space independent of declarations, variables, types, etc. Even so, labels
cannot have the same name as local declarations. The label name space is the body of the function
they appear in. Label name spaces do not nest, i.e. a label inside a block statement is accessible
from outside that block.

Block Statement

BlockStatement:

{3
{ Statementlist }

StatementList:
Statement
Statement StatementList

A block statement is a sequence of statements enclosed by . The statements are executed in
lexical order.

Expression Statement

ExpressionStatement:
Ezpression ;

The expression is evaluated.

Expressions that have no effect, like (x + x), are illegal in expression statements.

expression is needed, casting it to void will make it legal.

int x;

X++; // ok

X; // illegal
1+1; // illegal

cast(void) (x + x); // ok

Declaration Statement

Declaration statements declare variables and types.

DeclarationStatement:
StorageClassesqpy Declaration

Some declaration statements:

int a; // declare a as type int and initialize it to O
struct 8 { } // declare struct s
alias myint = int;

If Statement

If statements provide simple conditional execution of statements.

IfStatement:
if (IfCondition) ThenStatement
if (IfCondition) ThenStatement else ElseStatement

IfCondition:
Ezpression
auto Identifier = Exzpression
TypeCtors Identifier = Expression
TypeCtorsopy BasicType Declarator = Expression

ThenStatement:

185

If such an

186 CHAPTER 11. STATEMENTS

ScopeStatement

ElseStatement:
ScopeStatement

Ezpression is evaluated and must have a type that can be converted to a boolean. If it’s true
the ThenStatement is transferred to, else the ElseStatement is transferred to.

The ’dangling else’ parsing problem is solved by associating the else with the nearest if statement.

If an auto Identifier is provided, it is declared and initialized to the value and type of the
Expression. Its scope extends from when it is initialized to the end of the ThenStatement.

If a Declarator is provided, it is declared and initialized to the value of the Expression. Its scope
extends from when it is initialized to the end of the ThenStatement.

import std.regex;

if (auto m = std.regex.matchFirst("abcdef", "b(c)d"))

{
writefln("[%s]", m.pre); // prints [a]
writefln("[%s]", m.post); // prints [ef]
writefln("[%s]", m[0]); // prints [bcd]
writefln("[%s]", m[1]); // prints [c]

}

else

{
writeln(m.post); // Error: undefined identifier ’m’

}

writeln(m.pre); // Error: undefined identifier ’m’

While Statement

WhileStatement:
while (Ezpression) ScopeStatement

While statements implement simple loops.

Ezxpression is evaluated and must have a type that can be converted to a boolean. If it’s true
the ScopeStatement is executed. After the ScopeStatement is executed, the Fzpression is evalu-
ated again, and if true the ScopeStatement is executed again. This continues until the FExpression
evaluates to false.

187

int i = 0;
while (i < 10)
{
foo(i);
i++;

B

A BreakStatement will exit the loop. A ContinueStatement will transfer directly to evaluating
Ezxpression again.

Do Statement

DoStatement:
do ScopeStatement while (Ezpression) ;

Do while statements implement simple loops.

ScopeStatement is executed. Then Fxpression is evaluated and must have a type that can be
converted to a boolean. If it’s true the loop is iterated again. This continues until the Fxpression
evaluates to false.

int i = 0;
do
{

foo(i);

} while (++i < 10);

A BreakStatement will exit the loop. A ContinueStatement will transfer directly to evaluating
Ezpression again.

For Statement

For statements implement loops with initialization, test, and increment clauses.
ForStatement:
for (Initialize Testoy ; Increment.y) ScopeStatement
Initialize:

NoScopeNonEmptyStatement

188

Test:
Ezpression

Increment:
Ezpression

CHAPTER 11. STATEMENTS

Initialize is executed. Test is evaluated and must have a type that can be converted to a boolean.
If it’s true the statement is executed. After the statement is executed, the Increment is executed.
Then Test is evaluated again, and if true the statement is executed again. This continues until the

Test evaluates to false.

A BreakStatement will exit the loop. A ContinueStatement will transfer directly to the Incre-

ment.

A ForStatement creates a new scope.

for (int i = 0; i < 10; i++)
foo(i);

is equivalent to:

{
int 1i;
for (i = 0; i < 10; i++)
foo(i);
}

Function bodies cannot be empty:

for (int i = 0; i < 10; i++)
; // illegal

Use instead:

for (int i = 0; i < 10; i++)
{
}

If Initialize declares a variable, that variable’s scope
extends through the end of the for statement. For example:

The Initialize may be omitted. Test may also be omitted, and if so, it is treated as if it evaluated

to true.

189

Foreach Statement

A foreach statement loops over the contents of an aggregate.

ForeachStatement:
Foreach (ForeachTypelist ; Foreachdggregate) NoScopeNonEmptyStatement

Foreach:
foreach
foreach_reverse

ForeachTypelList:
ForeachType
ForeachType , ForeachTypelist

ForeachType:
ForeachTypedttributes p BasicType Declarator
ForeachTypedttributes pt Identifier

ForeachTypeAttributes
ForeachTypedttribute
ForeachTypedttribute ForeachTypedttributespt

ForeachTypeAttribute:
ref
TypeCtor

ForeachAggregate:
Ezpression

ForeachAggregate is evaluated. It must evaluate to an expression of type static array, dynamic
array, associative array, struct, class, delegate, or tuple. The NoScopeNonEmptyStatement is exe-
cuted, once for each element of the aggregate. At the start of each iteration, the variables declared

190 CHAPTER 11. STATEMENTS

by the ForeachTypeList are set to be a copy of the elements of the aggregate. If the variable is ref,
it is a reference to the contents of that aggregate.

The aggregate must be loop invariant, meaning that elements to the aggregate cannot be added
or removed from it in the NoScopeNonEmptyStatement.

Foreach over Arrays

If the aggregate is a static or dynamic array, there can be one or two variables declared. If one,
then the variable is said to be the value set to the elements of the array, one by one. The type of
the variable must match the type of the array contents, except for the special cases outlined below.
If there are two variables declared, the first is said to be the index and the second is said to be the
value. The index must be of int, uint or size_t type, it cannot be ref, and it is set to be the index
of the array element.

char[] a;

foreach (int i, char c; a)

{

writefln("al[%d]l =,"%c’", i, c);

For foreach, the elements for the array are iterated over starting at index 0 and continuing
to the maximum of the array. For foreach_reverse, the array elements are visited in the reverse
order.

Note: The ForeachTypeAttribute is implicit, and when a type is not specified, it is inferred. In
that case, auto is implied, and it is not necessary (and actually forbidden) to use it.

int[] arr;

foreach (n; arr) // ok, n is an int
writeln(n);

foreach (auto n; arr) // error, auto is redundant
writeln(n);

Foreach over Arrays of Characters

If the aggregate expression is a static or dynamic array of chars, wchars, or dchars, then the Type
of the wvalue can be any of char, wchar, or dchar. In this manner any UTF array can be decoded
into any UTF type:

char[] a = "\xE2\x89\xA0".dup; // \u2260 encoded as 3 UTF-8 bytes

191

foreach (dchar c; a)

{
writefln("al[l = %x", ¢); // prints ’al] = 2260’

dchar[] b = "\u2260"d.dup;

foreach (char c; b)

{
writef ("%x,,", ¢c); // prints ’e2, 89, a0, ’

Aggregates can be string literals, which can be accessed as char, wchar, or dchar arrays:

void test()

{
foreach (char c; "ab")
{
writefln("’%s’", c);
}
foreach (wchar w; "xy")
{
writefln("’%s’", w);
}
}

which would print:
) a)) b)) X)) y)

Foreach over Associative Arrays

If the aggregate expression is an associative array, there can be one or two variables declared. If
one, then the variable is said to be the value set to the elements of the array, one by one. The type
of the variable must match the type of the array contents. If there are two variables declared, the
first is said to be the index and the second is said to be the value. The index must be of the same
type as the indexing type of the associative array. It cannot be ref, and it is set to be the index of
the array element. The order in which the elements of the array are iterated over is unspecified for
foreach. foreach_reverse for associative arrays is illegal.

double[string] a; // index type is string, value type is double

192 CHAPTER 11. STATEMENTS

foreach (string s, double d; a)

{
writefln("al[’%s’] = %g", s, d);

Foreach over Structs and Classes with opApply

If the aggregate expression is a struct or class object, the foreach is defined by the special
opApply member function, and the foreach_reverse behavior is defined by the special
opApplyReverse member function. These functions have the type:

int opApply(scope int delegate(ref Type [, ...]) dg);

int opApplyReverse(scope int delegate(ref Type [, ...]) dg);

where Type matches the Type used in the ForeachType declaration of Identifier. Multi-
ple ForeachTypes correspond with multiple Type’s in the delegate type passed to opApply or
opApplyReverse. There can be multiple opApply and opApplyReverse functions, one is selected
by matching the type of dg to the ForeachTypes of the ForeachStatement. The body of the apply
function iterates over the elements it aggregates, passing them each to the dg function. If the dg
returns 0, then apply goes on to the next element. If the dg returns a nonzero value, apply must
cease iterating and return that value. Otherwise, after done iterating across all the elements, apply
will return 0.

For example, consider a class that is a container for two elements:

class Foo

{

uint [2] array;

int opApply(scope int delegate(ref uint) dg)
{

int result 0;

for (int i = 0; i < array.length; i++)

{

result = dg(arrayl[il);
if (result)
break;

}

return result;

193

An example using this might be:

void test()
{

Foo a = new Foo();

a.array[0] = 73;
a.array[1] = 82;

foreach (uint u; a)

{
writefln("%d", u);

which would print:

73 82 The scope storage class on the dg parameter means that the parameter’s value does
not escape the scope of the opApply function (an example would be assigning dg to a global). If
it cannot be statically guaranteed that dg does not escape, a closure may be allocated for it on
the heap instead of the stack. Best practice is to annotate delegate parameters with scope when
possible.

opApply can also be a templated function, which will infer the types of parameters based on the
ForeachStatement.

For example:

struct S
{
import std.traits : ParameterTypeTuple; // introspection template

int opApply(Dg) (scope Dg dg)
if (ParameterTypeTuple!Dg.length == 2) // foreach function takes 2 V
s parameters

return O;
int opApply(Dg) (scope Dg dg)

if (ParameterTypeTuple!Dg.length
s parameters

= 3) // foreach function takes 3 V

return O;

194 CHAPTER 11. STATEMENTS

}
void main()
{
foreach (int a, int b; SO) { } // calls first opApply function
foreach (int a, int b, float c¢; SO)) { } // calls second opApply function
}

It is important to make sure that, if opApply catches any exceptions, that those exceptions did
not originate from the delegate passed to opApply. The user would expect exceptions thrown from
a foreach body to both terminate the loop, and propagate outside the foreach body.

Foreach over Structs and Classes with Ranges

If the aggregate expression is a struct or class object, but the opApply for foreach, or
opApplyReverse foreach_reverse do not exist, then iteration over struct and class objects can be
done with range primitives. For foreach, this means the following properties and methods must
be defined:

Foreach Range Properties

Property Purpose

.empty returns true if no more elements
.front return the leftmost element of the range

Foreach Range Methods
Method Purpose

.popFront () move the left edge of the range right by one

Meaning:
foreach (e; range) { ... }

translates to:

for (auto __r = range; !__r.empty; __r.popFront())
{

auto e = __r.front;
}

Similarly, for foreach_reverse, the following properties and methods must be defined:

195

Foreach reverse Range Properties

Property Purpose

.empty returns true if no more elements
.back return the rightmost element of the range

Foreach reverse Range Methods

Method Purpose

.popBack() move the right edge of the range left by one

Meaning:
foreach_reverse (e; range) { ... }

translates to:

for (auto __r = range; !__r.empty; __r.popBack())
{

auto e = __r.back;
}

Foreach over Delegates

If ForeachAggregate is a delegate, the type signature of the delegate is of the same as for opApply.
This enables many different named looping strategies to coexist in the same class or struct.
For example:

void main()
{
// Custom loop implementation, that iterates over powers of 2 with
// alternating sign. The loop body is passed in dg.
int myLoop(int delegate(ref int) dg)
{
for (int z = 1; z < 128; z *= -2)
{
auto ret = dg(z);

// If the loop body contains a break, ret will be non-zero.
if (ret !'= 0)
return ret;

196 CHAPTER 11. STATEMENTS

return O;

// This example loop simply collects the loop index values into an array.
int[] result;
foreach (ref x; &myLoop)
{
result "= x;

}
assert(result == [1, -2, 4, -8, 16, -32, 64, -128]);

Note: When ForeachAggregate is a delegate, the compiler does not try to implement reverse
traversal of the results returned by the delegate when foreach_reverse is used. This may result in
code that is confusing to read. Therefore, using foreach_reverse with a delegate is now deprecated,
and will be rejected in the future.

Foreach over Tuples

If the aggregate expression is a tuple, there can be one or two variables declared. If one, then the
variable is said to be the wvalue set to the elements of the tuple, one by one. If the type of the
variable is given, it must match the type of the tuple contents. If it is not given, the type of the
variable is set to the type of the tuple element, which may change from iteration to iteration. If
there are two variables declared, the first is said to be the inder and the second is said to be the
value. The inder must be of int or uint type, it cannot be ref, and it is set to be the index of the
tuple element.

If the tuple is a list of types, then the foreach statement is executed once for each type, and the
value is aliased to that type.

import std.stdio;
import std.meta : AliasSeq;

void main()

{
alias TL = AliasSeq!(int, long, double);

foreach (T; TL)
{
writeln(typeid(T));

Prints:
int long double

Foreach Ref Parameters

ref can be used to update the original elements:

void test()

{
static uint[2] a = [7, 8];

foreach (ref uint u; a)

{

ut+;
}
foreach (uint u; a)

{
writefln("%d", u);

which would print:

8 9 ref can not be applied to the index values.

197

If not specified, the Types in the ForeachType can be inferred from the type of the ForeachAg-

gregate.

Foreach Restrictions

The aggregate itself must not be resized, reallocated, free’d, reassigned or destructed while the

foreach is iterating over the elements.

int[] a;

int[] b;

foreach (int i; a)

{
a = null; // error
a.length += 10; // error
a = b; // error

}

a = null; // ok

198 CHAPTER 11. STATEMENTS

Foreach Range Statement

A foreach range statement loops over the specified range.

ForeachRangeStatement:
Foreach (ForeachType ; LwrEzpression .. UprExpression) ScopeStatement

LwrExpression:
Ezpression

UprExpression:
Ezpression

ForeachType declares a variable with either an explicit type, or a type inferred from LwrEz-
pression and UprEzpression. The ScopeStatement is then executed n times, where n is the result
of UprExpression - LwrEzpression. If UprExzpression is less than or equal to LwrEzpression, the
ScopeStatement is executed zero times. If Foreach is foreach, then the variable is set to Lwr-
Expression, then incremented at the end of each iteration. If Foreach is foreach_reverse, then
the variable is set to UprEzpression, then decremented before each iteration. LwrExpression and
UprExpression are each evaluated exactly once, regardless of how many times the ScopeStatement
is executed.

import std.stdio;

int foo()

{
write("foo");
return 10;

}

void main()

{
foreach (i; 0 .. foo())
{

write(i);

}

}

Prints:

199

£000123456789

Break and Continue out of Foreach

A BreakStatement in the body of the foreach will exit the foreach, a ContinueStatement will imme-
diately start the next iteration.

Switch Statement
A switch statement goes to one of a collection of case statements depending on the value of the

switch expression.

SwitchStatement:
switch (Expression) ScopeStatement

CaseStatement:
case Argumentlist : ScopeStatementlist

CaseRangeStatement:
case FirstExp : .. case LastExzp : ScopeStatementlList

FirstExp:
AssignExpression

LastExp:
AssignExpression

DefaultStatement:
default : ScopeStatementlist

ScopeStatementList:
StatementlistNoCaseNoDefault

200 CHAPTER 11. STATEMENTS

StatementListNoCaseNoDefault:
StatementNoCaseNoDefault
StatementlNoCaseNoDefault StatementListNoCaseNoDefault

StatementNoCaseNoDefault:
NonEmptyStatementNoCaseNoDefault
ScopeBlockStatement

Ezxpression is evaluated. The result type T must be of integral type or char[], wchar[] or
dchar[]. The result is compared against each of the case expressions. If there is a match, the
corresponding case statement is transferred to.

The case expressions, ArgumentList, are a comma separated list of expressions.

A CaseRangeStatement is a shorthand for listing a series of case statements from FirstEzp to
LastFExp.

If none of the case expressions match, and there is a default statement, the default statement is
transferred to.

A switch statement must have a default statement.

The case expressions must all evaluate to a constant value or array, or a runtime initialized const
or immutable variable of integral type.

They must be implicitly convertible to the type of the switch Fzpression.

Case expressions must all evaluate to distinct values. Const or immutable variables must all
have different names. If they share a value, the first case statement with that value gets control.
There must be exactly one default statement.

The ScopeStatementList introduces a new scope.

Case statements and default statements associated with the switch can be nested within block
statements; they do not have to be in the outermost block. For example, this is allowed:

switch (i)
{
case 1:
{
case 2:
}
break;
}

A ScopeStatementList must either be empty, or be ended with a ContinueStatement, Break-
Statement, ReturnStatement, GotoStatement, ThrowStatement or assert(0) expression unless this is

201

the last case. This is to set apart with C’s error-prone implicit fall-through behavior. goto case;
could be used for explicit fall-through:

int number;
string message;
switch (number)

{
default: // valid: ends with ’throw’
throw new Exception("unknown, number");
case 3: // valid: ends with ’break’ (break out of the ’switch’ only)
message ~= "three,";
break;
case 4: // valid: ends with ’continue’ (continue the enclosing loop)
message ~= "four,";
continue;
case b: // valid: ends with ’goto’ (explicit fall-through to next case.)
message ~= "five,";
goto case;
case 6: // ERROR: implicit fall-through
message ~= "sixy";
case 1: // valid: the body is empty
case 2: // valid: this is the last case in the switch statement.
message = "one or two";
}

A break statement will exit the switch BlockStatement.
Strings can be used in switch expressions. For example:

char[] name;

switch (name)

{
case "fred":
case "sally":

202 CHAPTER 11. STATEMENTS

For applications like command line switch processing, this can lead to much more straightforward
code, being clearer and less error prone. char, wchar and dchar strings are allowed.

Implementation Note: The compiler’s code generator may assume that the case statements
are sorted by frequency of use, with the most frequent appearing first and the least frequent last.
Although this is irrelevant as far as program correctness is concerned, it is of performance interest.

Final Switch Statement

FinalSwitchStatement:
final switch (Expression) ScopeStatement

A final switch statement is just like a switch statement, except that:

No DefaultStatement is allowed.
No CaseRangeStatements are allowed.

If the switch Expression is of enum type, all the enum members must appear in the CaseS-
tatements.

The case expressions cannot evaluate to a run time initialized value.

Continue Statement

ContinueStatement:
continue Identifiergpt ;

A continue aborts the current iteration of its enclosing loop statement, and starts the next
iteration.

continue executes the next iteration of its innermost enclosing while, for, foreach, or do loop.
The increment clause is executed.

If continue is followed by Identifier, the Identifier must be the label of an enclosing while, for, or
do loop, and the next iteration of that loop is executed. It is an error if there is no such statement.

Any intervening finally clauses are executed, and any intervening synchronization objects are
released.

Note: If a finally clause executes a throw out of the finally clause, the continue target is never
reached.

for (1 = 0; i < 10; i++)
{
if (foo(i))
continue;

203

bar(Q) ;

Break Statement

BreakStatement:
break Identifieropt ;

A break exits the enclosing statement.

break exits the innermost enclosing while, for, foreach, do, or switch statement, resuming exe-
cution at the statement following it.

If break is followed by Identifier, the Identifier must be the label of an enclosing while, for, do
or switch statement, and that statement is exited. It is an error if there is no such statement.

Any intervening finally clauses are executed, and any intervening synchronization objects are
released.

Note: If a finally clause executes a throw out of the finally clause, the break target is never
reached.

for (i = 0; 1 < 10; i++)
{
if (foo(i))
break;

Return Statement

ReturnStatement:
return ETpressiongpt ;

A return exits the current function and supplies its return value.

Expression is required if the function specifies a return type that is not void. The Ezpression is
implicitly converted to the function return type.

At least one return statement, throw statement, or assert(0) expression is required if the function
specifies a return type that is not void, unless the function contains inline assembler code.

Before the function actually returns, any objects with scope storage duration are destroyed, any
enclosing finally clauses are executed, any scope(exit) statements are executed, any scope(success)
statements are executed, and any enclosing synchronization objects are released.

The function will not return if any enclosing finally clause does a return, goto or throw that
exits the finally clause.

204 CHAPTER 11. STATEMENTS

If there is an out postcondition (see Contract Programming), that postcondition is executed
after the Fzxpression is evaluated and before the function actually returns.

int foo(int x)
{

return x + 3;

Goto Statement

GotoStatement:
goto Identifier ;
goto default ;
goto case ;
goto case Ezpression ;

A goto transfers to the statement labeled with Identifier.

if (foo)
goto L1;
x = 3;
L1:
x++;

s

The second form, goto default;, transfers to the innermost DefaultStatement of an enclosing
SwitchStatement.

The third form, goto case;, transfers to the next CaseStatement of the innermost enclosing
SwitchStatement.

The fourth form, goto case Faxpression;, transfers to the CaseStatement of the innermost
enclosing SwitchStatement with a matching Ezpression.

switch (x)
{
case 3:
goto case;
case 4:
goto default;
case b:
goto case 4;
default:
x = 4;

205

break;

}

Any intervening finally clauses are executed, along with releasing any intervening synchronization
mutexes.
It is illegal for a GotoStatement to be used to skip initializations.

With Statement

The with statement is a way to simplify repeated references to the same object.

WithStatement:
with (Ezpression) ScopeStatement
with (Symbol) ScopeStatement
with (TemplatelInstance) ScopeStatement

where Fxpression evaluates to a class reference or struct instance. Within the with body the
referenced object is searched first for identifier symbols. The WithStatement

with (expression)

{
ident;
}
is semantically equivalent to:
{
Object tmp;
tmp = expression;
tmp.ident;
}

Note that Ezpression only gets evaluated once. The with statement does not change what this
or super refer to.

For Symbol which is a scope or Templatelnstance, the corresponding scope is searched when
looking up symbols. For example:

struct Foo

{

alias Y = int;

206 CHAPTER 11. STATEMENTS

Y y; // error, Y undefined

with (Foo)
{

Y y; // same as Foo.Y y;
}

Use of with object symbols that shadow local symbols with the same identifier are not allowed.
This is to reduce the risk of inadvertant breakage of with statements when new members are added
to the object declaration.

struct S
{
float x;
}
void main()
{
int x;
S s;
with (s)
{
x++; // error, shadows the int x declaration
}
}

Synchronized Statement

The synchronized statement wraps a statement with a mutex to synchronize access among multiple
threads.

SynchronizedStatement:
synchronized ScopeStatement
synchronized (Exzpression) ScopeStatement

Synchronized allows only one thread at a time to execute ScopeStatement by using a mutex.

What mutex is used is determined by the Ezpression. If there is no Ezpression, then a global
mutex is created, one per such synchronized statement. Different synchronized statements will have
different global mutexes.

207

If there is an Fxpression, it must evaluate to either an Object or an instance of an Interface,
in which case it is cast to the Object instance that implemented that Interface. The mutex used
is specific to that Object instance, and is shared by all synchronized statements referring to that
instance.

The synchronization gets released even if ScopeStatement terminates with an exception, goto,
or return.

Example:

synchronized { ... }

This implements a standard critical section.

Synchronized statements support recursive locking; that is, a function wrapped in synchronized
is allowed to recursively call itself and the behavior will be as expected: The mutex will be locked
and unlocked as many times as there is recursion.

Try Statement

Exception handling is done with the try-catch-finally statement.

TryStatement:
try ScopeStatement Catches
try ScopeStatement Catches FinallyStatement
try ScopeStatement FinallyStatement

Catches:
LastCatch
Catch
Catch Catches

LastCatch:
catch NoScopeNonEmptyStatement

Catch:
catch (CatchParameter) NoScopeNonEmptyStatement

CatchParameter:
BasicType Identifier

208 CHAPTER 11. STATEMENTS

FinallyStatement:
finally NoScopellonEmptyStatement

CatchParameter declares a variable v of type T, where T is

Throwable or derived from Throwable. v is initialized by the throw expression if T is of the
same type or a base class of the throw expression. The catch clause will be executed if the exception
object is of type T or derived from T.

If just type T is given and no variable v, then the catch clause is still executed.

It is an error if any CatchParameter type T1 hides a subsequent Catch with type T2, i.e. it is
an error if T1 is the same type as or a base class of T2.

LastCatch catches all exceptions.

The FinallyStatement is always executed, whether the try ScopeStatement exits with a goto,
break, continue, return, exception, or fall-through.

If an exception is raised in the FinallyStatement and is not caught before the original exception
is caught, it is chained to the previous exception via the next member of Throwable. Note that,
in contrast to most other programming languages, the new exception does not replace the original
exception. Instead, later exceptions are regarded as ’collateral damage’ caused by the first exception.
The original exception must be caught, and this results in the capture of the entire chain.

Thrown objects derived from FError are treated differently. They bypass the normal chaining
mechanism, such that the chain can only be caught by catching the first Error. In addition to the
list of subsequent exceptions, Error also contains a pointer that points to the original exception
(the head of the chain) if a bypass occurred, so that the entire exception history is retained.

import std.stdio;

int main()

{

try

{
try
{

throw new Exception("first");

}
finally
{

writeln("finally");
throw new Exception("second");

209

}
}
catch (Exception e)
{
writeln("catch /s", e.msg);
}

writeln("done");
return O;

prints:

finally catch first done

A FinallyStatement may not exit with a goto, break, continue, or return; nor may it be entered
with a goto.

A FinallyStatement may not contain any Catches. This restriction may be relaxed in future
versions.

Throw Statement

Throw an exception.

ThrowStatement:
throw Ezpression ;

Ezpression is evaluated and must be a Throwable reference. The Throwable reference is thrown
as an exception.

throw new Exception("message");

Scope Guard Statement

ScopeGuardStatement:
scope(exit) NonEmptyOrScopeBlockStatement
scope (success) NonEmptyOrScopeBlockStatement
scope (failure) NonEmptyOrScopeBlockStatement

The ScopeGuardStatement executes NonEmptyOrScopeBlockStatement at the close of the cur-
rent scope, rather than at the point where the Scope GuardStatement appears. scope (exit) executes
NonEmptyOrScopeBlockStatement when the scope exits normally or when it exits due to exception
unwinding. scope(failure) executes NonEmptyOrScopeBlockStatement when the scope exits due

210 CHAPTER 11. STATEMENTS

to exception unwinding. scope(success) executes NonEmptyOrScopeBlockStatement when the
scope exits normally.

If there are multiple ScopeGuardStatements in a scope, they will be executed in the reverse
lexical order in which they appear. If any scope instances are to be destroyed upon the close of the
scope, their destructions will be interleaved with the ScopeGuardStatements in the reverse lexical
order in which they appear.

write("1");

{
write("2");
scope(exit) write("3");
scope(exit) write("4");

write("5");
}
writeln();
writes:
12543
{
scope(exit) write("1");
scope(success) write("2");
scope(exit) write("3");
scope (success) write("4");
}
writeln();
writes:
4321
struct Foo
{
this(string s) { write(s); }
“this() { write("1"); %}
}
try
{

scope(exit) write("2");
scope (success) write("3");
Foo f = Foo("0");
scope(failure) write("4");
throw new Exception("msg");

211

scope(exit) write("5");
scope(success) write("6");
scope(failure) write("7");

}

catch (Exception e)

{

}

writeln();

writes:

0412

A scope(exit) or scope(success) statement may not exit with a throw, goto, break, continue,
or return; nor may it be entered with a goto.

Catching C++ Class Objects

On many platforms, catching C++ class objects is supported. Catching C++ objects and D objects
cannot both be done in the same TryStatement. Upon exit from the Catch, any destructors for the
C++ object will be run and the storage used for it reclaimed. C++ objects cannot be caught in
@safe code.

Asm Statement

Inline assembler is supported with the asm statement:

AsmStatement:
asm Functiondttributesp; { AsmInstructionlistpy }

AsmInstructionList:
AsmInstruction ;
AsmIinstruction ; AsmInstructionlist

An asm statement enables the direct use of assembly language instructions. This makes it easy
to obtain direct access to special CPU features without resorting to an external assembler. The D
compiler will take care of the function calling conventions, stack setup, etc.

The format of the instructions is, of course, highly dependent on the native instruction set of the
target CPU, and so is implementation defined. But, the format will follow the following conventions:

e It must use the same tokens as the D language uses.

212 CHAPTER 11. STATEMENTS

e The comment form must match the D language comments.
e Asm instructions are terminated by a ;, not by an end of line.

These rules exist to ensure that D source code can be tokenized independently of syntactic or
semantic analysis.
For example, for the Intel Pentium:

int x = 3;
asm

{
mov EAX,x; // load x and put it in register EAX

Inline assembler can be used to access hardware directly:

int gethardware()

{
asm
{
mov EAX, dword ptr 0x1234;
}
}

For some D implementations, such as a translator from D to C, an inline assembler makes no
sense, and need not be implemented. The version statement can be used to account for this:

version (D_InlineAsm_X86)

{
asm
{
}
}
else
{
/* ... some workaround ... */
}

Semantically consecutive AsmStatements shall not have any other instructions (such as register
save or restores) inserted between them by the compiler.

Pragma Statement

PragmaStatement:

213

Pragma NoScopeStatement

Mixin Statement

MixinStatement:
mixin (4ssignEzpression) ;

The AssignFExpression must evaluate at compile time to a constant string. The text contents of
the string must be compilable as a valid StatementList, and is compiled as such.

import std.stdio;

void main()

int j;

mixin("
Luuuuuouintx =035
uuuuuuuuforu(intuiuzuOQuiu<u3§ui++)

Luuuouuuoouuwriteln (xp i,) ;

Luuuuoou™) 3 // ok
const char[] s = "int_ y;";
mixin(s); // ok
y = 4; // ok, mixin declared y

char[] t = "y,=.3;";
mixin(t); // error, t is not evaluatable at compile time

mixin("y =") 4; // error, string must be complete statement

mixin("yu=" ~ n4;n); // ok

Chapter 12

Arrays

There are four kinds of arrays:

Kinds of Arrays

Syntax Description

type* Pointers to data
typelinteger| Static arrays
typel| Dynamic arrays
type|type] Associative arrays

Pointers

int* p;

These are simple pointers to data, analogous to C pointers. Pointers are provided for interfacing
with C and for specialized systems work. There is no length associated with it, and so there is no
way for the compiler or runtime to do bounds checking, etc., on it. Most conventional uses for
pointers can be replaced with dynamic arrays, out and ref parameters, and reference types.
Static Arrays

int[3] s;

These are analogous to C arrays. Static arrays are distinguished by having a length fixed at
compile time.

The total size of a static array cannot exceed 16Mb. A dynamic array should be used instead
for such large arrays.

A static array with a dimension of 0 is allowed, but no space is allocated for it. It’s useful as
the last member of a variable length struct, or as the degenerate case of a template expansion.

215

216 CHAPTER 12. ARRAYS

Static arrays are value types. Unlike in C and D version 1, static arrays are passed to functions
by value. Static arrays can also be returned by functions.
Dynamic Arrays

int[] a;

Dynamic arrays consist of a