Report a bug
If you spot a problem with this page, click here to create a Bugzilla issue.
Improve this page
Quickly fork, edit online, and submit a pull request for this page.
Requires a signed-in GitHub account. This works well for small changes.
If you'd like to make larger changes you may want to consider using
a local clone.
std.random
Facilities for
random
number generation.
Disclaimer: The random number generators and API provided in this
module are not designed to be cryptographically secure, and are therefore
unsuitable for cryptographic or security-related purposes such as generating
authentication tokens or network sequence numbers. For such needs, please use a
reputable cryptographic library instead.
The new-style generator objects hold their own state so they are
immune of threading issues. The generators feature a number of
well-known and well-documented methods of generating
random
numbers. An overall fast and reliable means to generate random
numbers
is the Mt19937 generator, which derives its name from
"Mersenne Twister
with a period of 2 to the power of
19937". In memory-constrained situations,
linear congruential generators such as MinstdRand0 and MinstdRand might be
useful. The standard library provides an alias Random for
whichever generator it considers the most fit for the target
environment.
In addition to random
number generators, this module features
distributions, which skew a generator's output statistical
distribution in various ways. So far the uniform distribution for
integers and real numbers have been implemented.
Source std/random.d
License:
Authors:
Andrei Alexandrescu
Masahiro Nakagawa (Xorshift
random
generator)
Joseph Rushton Wakeling (Algorithm D for random
sampling)
Ilya Yaroshenko (Mersenne Twister implementation, adapted from mir-random)
Credits
The entire random
number library architecture is derived from the
excellent C++0X
random
number facility proposed by Jens Maurer and contributed to by
researchers at the Fermi laboratory (excluding Xorshift).
Examples:
// seed a random generator with a constant auto rnd = Random(42); // Generate a uniformly-distributed integer in the range [0, 14] // If no random generator is passed, the global `rndGen` would be used auto i = uniform(0, 15, rnd); assert(i >= 0 && i < 15); // Generate a uniformly-distributed real in the range [0, 100) auto r = uniform(0.0L, 100.0L, rnd); assert(r >= 0 && r < 100); // Generate a 32-bit random number auto u = uniform!uint(rnd); static assert(is(typeof(u) == uint));
- enum bool
isUniformRNG
(Rng, ElementType);
enum boolisUniformRNG
(Rng); - Test if Rng is a random-number generator. The overload taking a ElementType also makes sure that the Rng generates values of that type.A random-number generator has at least the following features:
- it's an InputRange
- it has a 'bool isUniformRandom' field readable in CTFE
- enum bool
isSeedable
(Rng, SeedType);
enum boolisSeedable
(Rng); - Test if Rng is seedable. The overload taking a SeedType also makes sure that the Rng can be seeded with SeedType.A seedable random-number generator has the following additional features:
- it has a 'seed(ElementType)' function
- struct
LinearCongruentialEngine
(UIntType, UIntType a, UIntType c, UIntType m) if (isUnsigned!UIntType); - Linear Congruential generator.
- enum bool
isUniformRandom
; - Mark this as a Rng
- enum bool
hasFixedRange
; - Does this generator have a fixed range? (
true
). - enum UIntType
min
; - Lowest generated value (1 if c == 0, 0 otherwise).
- enum UIntType
max
; - Highest generated value (modulus - 1).
- enum UIntType
multiplier
;
enum UIntTypeincrement
;
enum UIntTypemodulus
; - The parameters of this distribution. The random number is x = (x * multipler +
increment
) %modulus
. - pure nothrow @nogc @safe this(UIntType
x0
); - Constructs a LinearCongruentialEngine generator seeded with
x0
. - pure nothrow @nogc @safe void
seed
(UIntTypex0
= 1); - (Re)seeds the generator.
- pure nothrow @nogc @safe void
popFront
(); - Advances the random sequence.
- const pure nothrow @nogc @property @safe UIntType
front
(); - Returns the current number in the random sequence.
- pure nothrow @nogc @property @safe typeof(this)
save
(); - enum bool
empty
; - Always
false
(random generators are infinite ranges). - const pure nothrow @nogc @safe bool
opEquals
(ref const LinearCongruentialEnginerhs
); - Compares against
rhs
for equality.
- alias
MinstdRand0
= LinearCongruentialEngine!(uint, 16807u, 0u, 2147483647u).LinearCongruentialEngine;
aliasMinstdRand
= LinearCongruentialEngine!(uint, 48271u, 0u, 2147483647u).LinearCongruentialEngine; - Define LinearCongruentialEngine generators with well-chosen parameters.
MinstdRand0
implements Park and Miller's "minimal standard" generator that uses 16807 for the multiplier.MinstdRand
implements a variant that has slightly better spectral behavior by using the multiplier 48271. Both generators are rather simplistic.Examples:// seed with a constant auto rnd0 = MinstdRand0(1); auto n = rnd0.front; // same for each run // Seed with an unpredictable value rnd0.seed(unpredictableSeed); n = rnd0.front; // different across runs
- struct
MersenneTwisterEngine
(UIntType, size_t w, size_t n, size_t m, size_t r, UIntType a, size_t u, UIntType d, size_t s, UIntType b, size_t t, UIntType c, size_t l, UIntType f) if (isUnsigned!UIntType); - The Mersenne Twister generator.
- enum bool
isUniformRandom
; - Mark this as a Rng
- enum size_t
wordSize
;
enum size_tstateSize
;
enum size_tshiftSize
;
enum size_tmaskBits
;
enum UIntTypexorMask
;
enum size_ttemperingU
;
enum UIntTypetemperingD
;
enum size_ttemperingS
;
enum UIntTypetemperingB
;
enum size_ttemperingT
;
enum UIntTypetemperingC
;
enum size_ttemperingL
;
enum UIntTypeinitializationMultiplier
; - Parameters for the generator.
- enum UIntType
min
; - Smallest generated value (0).
- enum UIntType
max
; - Largest generated value.
- enum UIntType
defaultSeed
; - The default seed value.
- pure nothrow @nogc @safe this(UIntType
value
); - Constructs a MersenneTwisterEngine object.
- pure nothrow @nogc @safe void
seed
()(UIntTypevalue
= defaultSeed); - Seeds a MersenneTwisterEngine object.
Note This
seed
function gives 2^w starting points (the lowest w bits of thevalue
provided will be used). To allow the RNG to be started in any one of its internal states use theseed
overload taking an InputRange. - void
seed
(T)(Trange
)
if (isInputRange!T && is(Unqual!(ElementType!T) == UIntType)); - Seeds a MersenneTwisterEngine object using an InputRange.Throws:Exception if the InputRange didn't provide enough elements to
seed
the generator. The number of elements required is the 'n' template parameter of the MersenneTwisterEngine struct. - pure nothrow @nogc @safe void
popFront
(); - Advances the generator.
- const pure nothrow @nogc @property @safe UIntType
front
(); - Returns the current random value.
- pure nothrow @nogc @property @safe typeof(this)
save
(); - enum bool
empty
; - Always
false
.
- alias
Mt19937
= MersenneTwisterEngine!(uint, 32LU, 624LU, 397LU, 31LU, 2567483615u, 11LU, 4294967295u, 7LU, 2636928640u, 15LU, 4022730752u, 18LU, 1812433253u).MersenneTwisterEngine; - A MersenneTwisterEngine instantiated with the parameters of the original engine MT19937, generating uniformly-distributed 32-bit numbers with a period of 2 to the power of 19937. Recommended for random number generation unless memory is severely restricted, in which case a LinearCongruentialEngine would be the generator of choice.Examples:
// seed with a constant Mt19937 gen; auto n = gen.front; // same for each run // Seed with an unpredictable value gen.seed(unpredictableSeed); n = gen.front; // different across runs
- alias
Mt19937_64
= MersenneTwisterEngine!(ulong, 64LU, 312LU, 156LU, 31LU, 13043109905998158313LU, 29LU, 6148914691236517205LU, 17LU, 8202884508482404352LU, 37LU, 18444473444759240704LU, 43LU, 6364136223846793005LU).MersenneTwisterEngine; - A MersenneTwisterEngine instantiated with the parameters of the original engine MT19937-64, generating uniformly-distributed 64-bit numbers with a period of 2 to the power of 19937.Examples:
// Seed with a constant auto gen = Mt19937_64(12345); auto n = gen.front; // same for each run // Seed with an unpredictable value gen.seed(unpredictableSeed); n = gen.front; // different across runs
- struct
XorshiftEngine
(UIntType, UIntType bits, UIntType a, UIntType b, UIntType c) if (isUnsigned!UIntType); - Xorshift generator using 32bit algorithm.Implemented according to Xorshift RNGs. Supporting bits are below, bits means second parameter of
XorshiftEngine
.bits period 32 2^32 - 1 64 2^64 - 1 96 2^96 - 1 128 2^128 - 1 160 2^160 - 1 192 2^192 - 2^32 - enum bool
isUniformRandom
; - Mark this as a Rng
- enum auto
empty
; - Always
false
(random generators are infinite ranges). - enum UIntType
min
; - Smallest generated value.
- enum UIntType
max
; - Largest generated value.
- pure nothrow @nogc @safe this(UIntType
x0
); - Constructs a XorshiftEngine generator seeded with
x0
. - pure nothrow @nogc @safe void
seed
(UIntTypex0
); - (Re)seeds the generator.
- const pure nothrow @nogc @property @safe UIntType
front
(); - Returns the current number in the random sequence.
- pure nothrow @nogc @safe void
popFront
(); - Advances the random sequence.
- pure nothrow @nogc @property @safe typeof(this)
save
(); - Captures a range state.
- const pure nothrow @nogc @safe bool
opEquals
(ref const XorshiftEnginerhs
); - Compares against
rhs
for equality.
- alias
Xorshift32
= XorshiftEngine!(uint, 32u, 13u, 17u, 15u).XorshiftEngine;
aliasXorshift64
= XorshiftEngine!(uint, 64u, 10u, 13u, 10u).XorshiftEngine;
aliasXorshift96
= XorshiftEngine!(uint, 96u, 10u, 5u, 26u).XorshiftEngine;
aliasXorshift128
= XorshiftEngine!(uint, 128u, 11u, 8u, 19u).XorshiftEngine;
aliasXorshift160
= XorshiftEngine!(uint, 160u, 2u, 1u, 4u).XorshiftEngine;
aliasXorshift192
= XorshiftEngine!(uint, 192u, 2u, 1u, 4u).XorshiftEngine;
aliasXorshift
= XorshiftEngine!(uint, 128u, 11u, 8u, 19u).XorshiftEngine; - Define XorshiftEngine generators with well-chosen parameters. See each bits examples of "
Xorshift
RNGs".Xorshift
is aXorshift128
's alias because 128bits implementation is mostly used.Examples:// Seed with a constant auto rnd = Xorshift(1); auto num = rnd.front; // same for each run // Seed with an unpredictable value rnd.seed(unpredictableSeed); num = rnd.front; // different across rnd
- nothrow @nogc @property @trusted uint
unpredictableSeed
(); - A "good" seed for initializing random number engines. Initializing with
unpredictableSeed
makes engines generate different random number sequences every run.Returns:A single unsigned integer seed value, different on each successive callExamples:auto rnd = Random(unpredictableSeed); auto n = rnd.front; static assert(is(typeof(n) == uint));
- alias
Random
= MersenneTwisterEngine!(uint, 32LU, 624LU, 397LU, 31LU, 2567483615u, 11LU, 4294967295u, 7LU, 2636928640u, 15LU, 4022730752u, 18LU, 1812433253u).MersenneTwisterEngine; - The "default", "favorite", "suggested" random number generator type on the current platform. It is an alias for one of the previously-defined generators. You may want to use it if (1) you need to generate some nice random numbers, and (2) you don't care for the minutiae of the method being used.
- @property ref @safe Random
rndGen
(); - Global random number generator used by various functions in this module whenever no generator is specified. It is allocated per-thread and initialized to an unpredictable value for each thread.Returns:A singleton instance of the default random number generator
- auto
uniform
(string boundaries = "[)", T1, T2)(T1a
, T2b
)
if (!is(CommonType!(T1, T2) == void));
autouniform
(string boundaries = "[)", T1, T2, UniformRandomNumberGenerator)(T1a
, T2b
, ref UniformRandomNumberGeneratorurng
)
if (isFloatingPoint!(CommonType!(T1, T2)) && isUniformRNG!UniformRandomNumberGenerator); - Generates
a
number betweena
andb
. The boundaries parameter controls the shape of the interval (open vs. closed on either side). Valid values for boundaries are "[]", "(]", "[)", and "()". The default interval is closed to the left and open to the right. The version that does not takeurng
uses the default generator rndGen.Parameters:T1 a
lower bound of the uniform distribution T2 b
upper bound of the uniform distribution UniformRandomNumberGenerator urng
(optional) random number generator to use; if not specified, defaults to rndGen Returns:A single random variate drawn from the uniform distribution betweena
andb
, whose type is the common type of these parametersExamples:auto gen = Random(unpredictableSeed); // Generate an integer in [0, 1023] auto a = uniform(0, 1024, gen); // Generate a float in [0, 1) auto b = uniform(0.0f, 1.0f, gen);
Examples:Create an array of random numbers using range functions and UFCSimport std.array : array; import std.range : generate, takeExactly; int[] arr = generate!(() => uniform(0, 100)).takeExactly(10).array; writeln(arr.length); // 10 assert(arr[0] >= 0 && arr[0] < 100);
- auto
uniform
(T, UniformRandomNumberGenerator)(ref UniformRandomNumberGeneratorurng
)
if (!is(T == enum) && (isIntegral!T || isSomeChar!T) && isUniformRNG!UniformRandomNumberGenerator);
autouniform
(T)()
if (!is(T == enum) && (isIntegral!T || isSomeChar!T)); - Generates a uniformly-distributed number in the range [T.min, T.max] for any integral or character type T. If no random number generator is passed, uses the default rndGen.Parameters:
UniformRandomNumberGenerator urng
(optional) random number generator to use; if not specified, defaults to rndGen Returns:Random variate drawn from the uniform distribution across all possible values of the integral or character type T. - auto
uniform
(E, UniformRandomNumberGenerator)(ref UniformRandomNumberGeneratorurng
)
if (is(E == enum) && isUniformRNG!UniformRandomNumberGenerator);
autouniform
(E)()
if (is(E == enum)); - Returns a uniformly selected member of enum E. If no random number generator is passed, uses the default rndGen.Parameters:
UniformRandomNumberGenerator urng
(optional) random number generator to use; if not specified, defaults to rndGen Returns:Random variate drawn with equal probability from any of the possible values of the enum E.Examples:enum Fruit { apple, mango, pear } auto randFruit = uniform!Fruit();
- T
uniform01
(T = double)()
if (isFloatingPoint!T);
Tuniform01
(T = double, UniformRNG)(ref UniformRNGrng
)
if (isFloatingPoint!T && isUniformRNG!UniformRNG); - Generates a uniformly-distributed floating point number of type T in the range [0, 1). If no random number generator is specified, the default RNG rndGen will be used as the source of randomness.
uniform01
offers a faster generation of random variates than the equivalent uniform!"[)"(0.0, 1.0) and so may be preferred for some applications.Parameters:UniformRNG rng
(optional) random number generator to use; if not specified, defaults to rndGen Returns:Floating-point random variate of type T drawn from the uniform distribution across the half-open interval [0, 1). - F[]
uniformDistribution
(F = double)(size_tn
, F[]useThis
= null)
if (isFloatingPoint!F); - Generates a uniform probability distribution of size
n
, i.e., an array of sizen
of positive numbers of type F that sum to 1. IfuseThis
is provided, it is used as storage. - ref auto
choice
(Range, RandomGen = Random)(auto ref Rangerange
, ref RandomGenurng
)
if (isRandomAccessRange!Range && hasLength!Range && isUniformRNG!RandomGen);
ref autochoice
(Range)(auto ref Rangerange
); - Returns a random, uniformly chosen, element e from the supplied Range
range
. If no random number generator is passed, the default rndGen is used.Parameters:Range range
a random access range
that has the length property definedRandomGen urng
(optional) random number generator to use; if not specified, defaults to rndGen Returns:A single random element drawn from therange
. If it can, it will return a ref to therange
element, otherwise it will return a copy.Examples:import std.algorithm.searching : canFind; auto array = [1, 2, 3, 4, 5]; auto elem = choice(array); assert(canFind(array, elem), "Choice did not return a valid element from the given Range"); auto urng = Random(unpredictableSeed); elem = choice(array, urng); assert(canFind(array, elem), "Choice did not return a valid element from the given Range"); auto rng2 = Xorshift(); elem = choice(array, rng2); assert(canFind(array, elem), "Choice did not return a valid element from the given Range");
- void
randomShuffle
(Range, RandomGen)(Ranger
, ref RandomGengen
)
if (isRandomAccessRange!Range && isUniformRNG!RandomGen);
voidrandomShuffle
(Range)(Ranger
)
if (isRandomAccessRange!Range); - Shuffles elements of
r
usinggen
as a shuffler.r
must be a random-access range with length. If no RNG is specified, rndGen will be used.Parameters:Range r
random-access range whose elements are to be shuffled RandomGen gen
(optional) random number generator to use; if not specified, defaults to rndGen - void
partialShuffle
(Range, RandomGen)(Ranger
, in size_tn
, ref RandomGengen
)
if (isRandomAccessRange!Range && isUniformRNG!RandomGen);
voidpartialShuffle
(Range)(Ranger
, in size_tn
)
if (isRandomAccessRange!Range); - Partially shuffles the elements of
r
such that upon returningr
[0 ..n
] is a random subset ofr
and is randomly ordered.r
[n
..r
.length] will contain the elements not inr
[0 ..n
]. These will be in an undefined order, but will not be random in the sense that their order afterpartialShuffle
returns will not be independent of their order beforepartialShuffle
was called.r
must be a random-access range with length.n
must be less than or equal tor
.length. If no RNG is specified, rndGen will be used.Parameters:Range r
random-access range whose elements are to be shuffled size_t n
number of elements of r
to shuffle (counting from the beginning); must be less thanr
.lengthRandomGen gen
(optional) random number generator to use; if not specified, defaults to rndGen - size_t
dice
(Rng, Num)(ref Rngrnd
, Num[]proportions
...)
if (isNumeric!Num && isForwardRange!Rng);
size_tdice
(R, Range)(ref Rrnd
, Rangeproportions
)
if (isForwardRange!Range && isNumeric!(ElementType!Range) && !isArray!Range);
size_tdice
(Range)(Rangeproportions
)
if (isForwardRange!Range && isNumeric!(ElementType!Range) && !isArray!Range);
size_tdice
(Num)(Num[]proportions
...)
if (isNumeric!Num); - Rolls a
dice
with relative probabilities stored inproportions
. Returns the index inproportions
that was chosen.Parameters:Rng rnd
(optional) random number generator to use; if not specified, defaults to rndGen Num[] proportions
forward range or list of individual values whose elements correspond to the probabilities with which to choose the corresponding index value Returns:Random variate drawn from the index values [0, ...proportions
.length - 1], with the probability of getting an individual index value i being proportional toproportions
[i].Examples:auto x = dice(0.5, 0.5); // x is 0 or 1 in equal proportions auto y = dice(50, 50); // y is 0 or 1 in equal proportions auto z = dice(70, 20, 10); // z is 0 70% of the time, 1 20% of the time, // and 2 10% of the time
- struct
RandomCover
(Range, UniformRNG = void) if (isRandomAccessRange!Range && (isUniformRNG!UniformRNG || is(UniformRNG == void)));
autorandomCover
(Range, UniformRNG)(Ranger
, auto ref UniformRNGrng
)
if (isRandomAccessRange!Range && isUniformRNG!UniformRNG);
autorandomCover
(Range)(Ranger
)
if (isRandomAccessRange!Range); - Covers a given range
r
in a random manner, i.e. goes through each element ofr
once and only once, just in a random order.r
must be a random-access range with length.If no random number generator is passed torandomCover
, the thread-global RNG rndGen will be used internally.Parameters:Range r
random-access range to cover UniformRNG rng
(optional) random number generator to use; if not specified, defaults to rndGen Returns:Range whose elements consist of the elements ofr
, in random order. Will be a forward range if bothr
andrng
are forward ranges, an input range otherwise.Example
int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]; foreach (e; randomCover(a)) { writeln(e); }
WARNING: If an alternative RNG is desired, it is essential for this to be a new RNG seeded in an unpredictable manner. Passing it a RNG used elsewhere in the program will result in unintended correlations, due to the current implementation of RNGs as value types.Example
int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]; foreach (e; randomCover(a, Random(unpredictableSeed))) // correct! { writeln(e); } foreach (e; randomCover(a, rndGen)) // DANGEROUS!! rndGen gets copied by value { writeln(e); } foreach (e; randomCover(a, rndGen)) // ... so this second random cover { // will output the same sequence as writeln(e); // the previous one. }
- struct
RandomSample
(Range, UniformRNG = void) if (isInputRange!Range && (isUniformRNG!UniformRNG || is(UniformRNG == void)));
autorandomSample
(Range)(Ranger
, size_tn
, size_ttotal
)
if (isInputRange!Range);
autorandomSample
(Range)(Ranger
, size_tn
)
if (isInputRange!Range && hasLength!Range);
autorandomSample
(Range, UniformRNG)(Ranger
, size_tn
, size_ttotal
, auto ref UniformRNGrng
)
if (isInputRange!Range && isUniformRNG!UniformRNG);
autorandomSample
(Range, UniformRNG)(Ranger
, size_tn
, auto ref UniformRNGrng
)
if (isInputRange!Range && hasLength!Range && isUniformRNG!UniformRNG); - Selects a random subsample out of
r
, containing exactlyn
elements. The order of elements is the same as in the original range. Thetotal
length ofr
must be known. Iftotal
is passed in, thetotal
number of sample is considered to betotal
. Otherwise,RandomSample
usesr
.length.Parameters:Range r
range to sample from size_t n
number of elements to include in the sample; must be less than or equal to the total
number of elements inr
and/or the parametertotal
(if provided)size_t total
(semi-optional) number of elements of r
from which to select the sample (counting from the beginning); must be less than or equal to thetotal
number of elements inr
itself. May be omitted ifr
has the .length property and the sample is to be drawn from all elements ofr
.UniformRNG rng
(optional) random number generator to use; if not specified, defaults to rndGen Returns:Range whose elements consist of a randomly selected subset of the elements ofr
, in the same order as these elements appear inr
itself. Will be a forward range if bothr
andrng
are forward ranges, an input range otherwise.RandomSample
implements Jeffrey Scott Vitter's Algorithm D (see Vitter 1984, 1987), which selects a sample of sizen
in O(n
) steps and requiring O(n
) random variates, regardless of the size of the data being sampled. The exception to this is if traversing k elements on the input range is itself an O(k) operation (e.g. when sampling lines from an input file), in which case the sampling calculation will inevitably be of O(total
).RandomSample
will throw an exception iftotal
is verifiably less than thetotal
number of elements available in the input, or ifn
>total
. If no random number generator is passed torandomSample
, the thread-global RNG rndGen will be used internally.Example
int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ]; // Print 5 random elements picked off from a foreach (e; randomSample(a, 5)) { writeln(e); }
WARNING: If an alternative RNG is desired, it is essential for this to be a new RNG seeded in an unpredictable manner. Passing it a RNG used elsewhere in the program will result in unintended correlations, due to the current implementation of RNGs as value types.Example
int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ]; foreach (e; randomSample(a, 5, Random(unpredictableSeed))) // correct! { writeln(e); } foreach (e; randomSample(a, 5, rndGen)) // DANGEROUS!! rndGen gets { // copied by value writeln(e); } foreach (e; randomSample(a, 5, rndGen)) // ... so this second random { // sample will select the same writeln(e); // values as the previous one. }
- const @property bool
empty
();
@property ref autofront
();
voidpopFront
();
@property typeof(this)save
();
@property size_tlength
(); - Range primitives.
- @property size_t
index
(); - Returns the
index
of the visited record.
Copyright © 1999-2018 by the D Language Foundation | Page generated by
Ddoc on Tue Mar 13 17:32:09 2018