This class represents a mutex that allows any number of readers to enter,
 but when a writer enters, all other readers and writers are blocked.
				
				Please note that this mutex is not recursive and is intended to guard access
 to data only.  Also, no deadlock checking is in place because doing so would
 require dynamic memory allocation, which would reduce performance by an
 unacceptable amount.  As a result, any attempt to recursively acquire this
 mutex may well deadlock the caller, particularly if a write lock is acquired
 while holding a read lock, or vice-versa.  In practice, this should not be
 an issue however, because it is uncommon to call deeply into unknown code
 while holding a lock that simply protects data.
				Constructors
					
						
						
							| Name | Description | 
						
							| this | Initializes a read/write mutex object with the supplied policy. | 
					
				
				
				Methods
					
						
						
							| Name | Description | 
						
							| factory | Create instance of class specified by the fully qualified name
 classname.
 The class must either have no constructors or have
 a default constructor. | 
						
							| opCmp | Compare with another Object obj. | 
						
							| opEquals | Test whether thisis equal too.
 The default implementation only compares by identity (using theisoperator).
 Generally, overrides foropEqualsshould attempt to compare objects by their contents. | 
						
							| toHash | Compute hash function for Object. | 
						
							| toString | Convert Object to a human readable string. | 
					
				
				Inner classes
					
						
						
							| Name | Description | 
						
							| Reader | This class can be considered a mutex in its own right, and is used to
 negotiate a read lock for the enclosing mutex. | 
						
							| Writer | This class can be considered a mutex in its own right, and is used to
 negotiate a write lock for the enclosing mutex. | 
					
				
				Enums
					
						
						
							| Name | Description | 
						
							| Policy | Defines the policy used by this mutex.  Currently, two policies are
 defined. | 
					
				
				Example
import core.atomic, core.thread, core.sync.semaphore;
static void runTest(ReadWriteMutex.Policy policy)
{
    scope mutex = new ReadWriteMutex(policy);
    scope rdSemA = new Semaphore, rdSemB = new Semaphore,
          wrSemA = new Semaphore, wrSemB = new Semaphore;
    shared size_t numReaders, numWriters;
    void readerFn()
    {
        synchronized (mutex.reader)
        {
            atomicOp!"+="(numReaders, 1);
            rdSemA.notify();
            rdSemB.wait();
            atomicOp!"-="(numReaders, 1);
        }
    }
    void writerFn()
    {
        synchronized (mutex.writer)
        {
            atomicOp!"+="(numWriters, 1);
            wrSemA.notify();
            wrSemB.wait();
            atomicOp!"-="(numWriters, 1);
        }
    }
    void waitQueued(size_t queuedReaders, size_t queuedWriters)
    {
        for (;;)
        {
            synchronized (mutex.m_commonMutex)
            {
                if (mutex.m_numQueuedReaders == queuedReaders &&
                    mutex.m_numQueuedWriters == queuedWriters)
                    break;
            }
            Thread.yield();
        }
    }
    scope group = new ThreadGroup;
    // 2 simultaneous readers
    group.create(&readerFn); group.create(&readerFn);
    rdSemA.wait(); rdSemA.wait();
    writeln(numReaders); // 2
    rdSemB.notify(); rdSemB.notify();
    group.joinAll();
    writeln(numReaders); // 0
    foreach (t; group) group.remove(t);
    // 1 writer at a time
    group.create(&writerFn); group.create(&writerFn);
    wrSemA.wait();
    assert(!wrSemA.tryWait());
    writeln(numWriters); // 1
    wrSemB.notify();
    wrSemA.wait();
    writeln(numWriters); // 1
    wrSemB.notify();
    group.joinAll();
    writeln(numWriters); // 0
    foreach (t; group) group.remove(t);
    // reader and writer are mutually exclusive
    group.create(&readerFn);
    rdSemA.wait();
    group.create(&writerFn);
    waitQueued(0, 1);
    assert(!wrSemA.tryWait());
    assert(numReaders == 1 && numWriters == 0);
    rdSemB.notify();
    wrSemA.wait();
    assert(numReaders == 0 && numWriters == 1);
    wrSemB.notify();
    group.joinAll();
    assert(numReaders == 0 && numWriters == 0);
    foreach (t; group) group.remove(t);
    // writer and reader are mutually exclusive
    group.create(&writerFn);
    wrSemA.wait();
    group.create(&readerFn);
    waitQueued(1, 0);
    assert(!rdSemA.tryWait());
    assert(numReaders == 0 && numWriters == 1);
    wrSemB.notify();
    rdSemA.wait();
    assert(numReaders == 1 && numWriters == 0);
    rdSemB.notify();
    group.joinAll();
    assert(numReaders == 0 && numWriters == 0);
    foreach (t; group) group.remove(t);
    // policy determines whether queued reader or writers progress first
    group.create(&writerFn);
    wrSemA.wait();
    group.create(&readerFn);
    group.create(&writerFn);
    waitQueued(1, 1);
    assert(numReaders == 0 && numWriters == 1);
    wrSemB.notify();
    if (policy == ReadWriteMutex.Policy.PREFER_READERS)
    {
        rdSemA.wait();
        assert(numReaders == 1 && numWriters == 0);
        rdSemB.notify();
        wrSemA.wait();
        assert(numReaders == 0 && numWriters == 1);
        wrSemB.notify();
    }
    else if (policy == ReadWriteMutex.Policy.PREFER_WRITERS)
    {
        wrSemA.wait();
        assert(numReaders == 0 && numWriters == 1);
        wrSemB.notify();
        rdSemA.wait();
        assert(numReaders == 1 && numWriters == 0);
        rdSemB.notify();
    }
    group.joinAll();
    assert(numReaders == 0 && numWriters == 0);
    foreach (t; group) group.remove(t);
}
runTest(ReadWriteMutex.Policy.PREFER_READERS);
runTest(ReadWriteMutex.Policy.PREFER_WRITERS);