Function std.random.dice
Get a random index into a list of weights corresponding to each index
{null} dice(Rng, Num)()
if (isNumeric!Num && isForwardRange!Rng);
size_t dice(R, Range)
(
ref R rnd,
Range proportions
)
if (isForwardRange!Range && isNumeric!(ElementType!Range) && !isArray!Range);
size_t dice(Range)
(
Range proportions
)
if (isForwardRange!Range && isNumeric!(ElementType!Range) && !isArray!Range);
{null} dice(Num)()
if (isNumeric!Num);
Similar to rolling a die with relative probabilities stored in proportions.
Returns the index in proportions that was chosen.
Note
Usually, dice are 'fair', meaning that each side has equal probability
to come up, in which case 1 + uniform(0, 6) can simply be used.
In future Phobos versions, this function might get renamed to something like
weightedChoice to avoid confusion.
Parameters
| Name | Description |
|---|---|
| rnd | (optional) random number generator to use; if not
specified, defaults to rndGen |
| proportions | forward range or list of individual values whose elements correspond to the probabilities with which to choose the corresponding index value |
Returns
Random variate drawn from the index values
[0, ... proportions - 1], with the probability
of getting an individual index value i being proportional to
proportions[i].
Example
auto d6 = 1 + dice(1, 1, 1, 1, 1, 1); // fair dice roll
auto d6b = 1 + dice(2, 1, 1, 1, 1, 1); // double the chance to roll '1'
auto x = dice(0.5, 0.5); // x is 0 or 1 in equal proportions
auto y = dice(50, 50); // y is 0 or 1 in equal proportions
auto z = dice(70, 20, 10); // z is 0 70% of the time, 1 20% of the time,
// and 2 10% of the time
Example
auto rnd = MinstdRand0(42);
auto z = rnd .dice(70, 20, 10);
writeln(z); // 0
z = rnd .dice(30, 20, 40, 10);
writeln(z); // 2
Example
auto rnd = Xorshift(123_456_789);
auto i = dice(rnd, 0.0, 100.0);
writeln(i); // 1
i = dice(rnd, 100.0, 0.0);
writeln(i); // 0
i = dice(100U, 0U);
writeln(i); // 0
Authors
Andrei Alexandrescu Masahiro Nakagawa (Xorshift random generator) Joseph Rushton Wakeling (Algorithm D for random sampling) Ilya Yaroshenko (Mersenne Twister implementation, adapted from mir-random)