Report a bug
If you spot a problem with this page, click here to create a Bugzilla issue.
Improve this page
Quickly fork, edit online, and submit a pull request for this page.
Requires a signed-in GitHub account. This works well for small changes.
If you'd like to make larger changes you may want to consider using
local clone.
std.complex
This module contains the Complex type, which is used to represent
complex numbers, along with related mathematical operations and functions.
Complex will eventually replace
the built-in types cfloat, cdouble, creal, ifloat,
idouble, and ireal.
Authors:
Lars Tandle Kyllingstad, Don Clugston
License:
Source: std/complex.d
- pure nothrow @nogc @safe auto complex(R)(R re) if (is(R : double));
pure nothrow @nogc @safe auto complex(R, I)(R re, I im) if (is(R : double) && is(I : double)); - Helper function that returns a complex number with the specified real and imaginary parts.Parameters:Returns:Complex instance with real and imaginary parts set to the values provided as input. If neither re nor im are floating-point numbers, the return type will be Complex!double. Otherwise, the return type is deduced using std.traits.CommonType!(R, I).Examples:
auto a = complex(1.0); static assert (is(typeof(a) == Complex!double)); assert (a.re == 1.0); assert (a.im == 0.0); auto b = complex(2.0L); static assert (is(typeof(b) == Complex!real)); assert (b.re == 2.0L); assert (b.im == 0.0L); auto c = complex(1.0, 2.0); static assert (is(typeof(c) == Complex!double)); assert (c.re == 1.0); assert (c.im == 2.0); auto d = complex(3.0, 4.0L); static assert (is(typeof(d) == Complex!real)); assert (d.re == 3.0); assert (d.im == 4.0L); auto e = complex(1); static assert (is(typeof(e) == Complex!double)); assert (e.re == 1); assert (e.im == 0); auto f = complex(1L, 2); static assert (is(typeof(f) == Complex!double)); assert (f.re == 1L); assert (f.im == 2); auto g = complex(3, 4.0L); static assert (is(typeof(g) == Complex!real)); assert (g.re == 3); assert (g.im == 4.0L);
- struct Complex(T) if (isFloatingPoint!T);
- A complex number parametrised by a type T, which must be either float, double or real.
- T re;
- The real part of the number.
- T im;
- The imaginary part of the number.
- const string toString();
const void toString(Char)(scope void delegate(const(Char)[]) sink, FormatSpec!Char formatSpec); - Converts the complex number to a string representation.The second form of this function is usually not called directly; instead, it is used via std.string.format, as shown in the examples below. Supported format characters are 'e', 'f', 'g', 'a', and 's'. See the std.format and std.string.format documentation for more information.Examples:
auto c = complex(1.2, 3.4); // Vanilla toString formatting: assert(c.toString() == "1.2+3.4i"); // Formatting with std.string.format specs: the precision and width // specifiers apply to both the real and imaginary parts of the // complex number. import std.format : format; assert(format("%.2f", c) == "1.20+3.40i"); assert(format("%4.1f", c) == " 1.2+ 3.4i");
- pure nothrow @nogc @safe T abs(T)(Complex!T z);
- Parameters:
Complex!T z A complex number. Returns:The absolute value (or modulus) of z.Examples:assert (abs(complex(1.0)) == 1.0); assert (abs(complex(0.0, 1.0)) == 1.0); assert (abs(complex(1.0L, -2.0L)) == std.math.sqrt(5.0L));
- pure nothrow @nogc @safe T sqAbs(T)(Complex!T z);
pure nothrow @nogc @safe T sqAbs(T)(T x) if (isFloatingPoint!T); - Parameters:
Complex!T z A complex number. T x A real number. Returns:The squared modulus of z. For genericity, if called on a real number, returns its square.Examples:import std.math; assert (sqAbs(complex(0.0)) == 0.0); assert (sqAbs(complex(1.0)) == 1.0); assert (sqAbs(complex(0.0, 1.0)) == 1.0); assert (approxEqual(sqAbs(complex(1.0L, -2.0L)), 5.0L)); assert (approxEqual(sqAbs(complex(-3.0L, 1.0L)), 10.0L)); assert (approxEqual(sqAbs(complex(1.0f,-1.0f)), 2.0f));
- pure nothrow @nogc @safe T arg(T)(Complex!T z);
- Parameters:
Complex!T z A complex number. Returns:The argument (or phase) of z.Examples:import std.math; assert (arg(complex(1.0)) == 0.0); assert (arg(complex(0.0L, 1.0L)) == PI_2); assert (arg(complex(1.0L, 1.0L)) == PI_4);
- pure nothrow @nogc @safe Complex!T conj(T)(Complex!T z);
- Parameters:
Complex!T z A complex number. Returns:The complex conjugate of z.Examples:assert (conj(complex(1.0)) == complex(1.0)); assert (conj(complex(1.0, 2.0)) == complex(1.0, -2.0));
- pure nothrow @nogc @safe Complex!(CommonType!(T, U)) fromPolar(T, U)(T modulus, U argument);
- Constructs a complex number given its absolute value and argument.Parameters:
T modulus The modulus U argument The argument Returns:The complex number with the given modulus and argument.Examples:import std.math; auto z = fromPolar(std.math.sqrt(2.0), PI_4); assert (approxEqual(z.re, 1.0L, real.epsilon)); assert (approxEqual(z.im, 1.0L, real.epsilon));
- pure nothrow @nogc @safe Complex!T sin(T)(Complex!T z);
pure nothrow @nogc @safe Complex!T cos(T)(Complex!T z); - Trigonometric functions on complex numbers.Parameters:
Complex!T z A complex number. Returns:The sine and cosine of z, respectively.Examples:assert(sin(complex(0.0)) == 0.0); assert(sin(complex(2.0L, 0)) == std.math.sin(2.0L));
Examples:import std.math; import std.complex; assert(cos(complex(0.0)) == 1.0); assert(cos(complex(1.3L)) == std.math.cos(1.3L)); assert(cos(complex(0, 5.2L)) == cosh(5.2L));
- pure nothrow @nogc @trusted Complex!real expi(real y);
- Parameters:
real y A real number. Returns:The value of cos(y) + i sin(y).Note: expi is included here for convenience and for easy migration of code that uses std.math.expi. Unlike std.math.expi, which uses the x87 fsincos instruction when possible, this function is no faster than calculating cos(y) and sin(y) separately.
Examples:assert(expi(1.3e5L) == complex(std.math.cos(1.3e5L), std.math.sin(1.3e5L))); assert(expi(0.0L) == 1.0L); auto z1 = expi(1.234); auto z2 = std.math.expi(1.234); assert(z1.re == z2.re && z1.im == z2.im);
- pure nothrow @nogc @safe Complex!T sqrt(T)(Complex!T z);
- Parameters:
Complex!T z A complex number. Returns:The square root of z.Examples:assert (sqrt(complex(0.0)) == 0.0); assert (sqrt(complex(1.0L, 0)) == std.math.sqrt(1.0L)); assert (sqrt(complex(-1.0L, 0)) == complex(0, 1.0L));