Report a bug
If you spot a problem with this page, click here to create a Bugzilla issue.
Improve this page
Quickly fork, edit online, and submit a pull request for this page.
Requires a signed-in GitHub account. This works well for small changes.
If you'd like to make larger changes you may want to consider using
a local clone.
object
Forms the symbols available to all D programs. Includes Object, which is
the root of the class object hierarchy. This module is implicitly
imported.
License:
Authors:
Walter Bright, Sean Kelly
- class
Object
; - All D class objects inherit from Object.
- string
toString
(); - Convert Object to a human readable string.
- nothrow @trusted size_t
toHash
(); - Compute hash function for Object.
- int
opCmp
(Objecto
); - Compare with another Object obj.Returns:
this < obj < 0 this == obj 0 this > obj > 0 - bool
opEquals
(Objecto
); - Test whether this is equal to o. The default implementation only compares by identity (using the is operator). Generally, overrides for opEquals should attempt to compare objects by their contents.
- static Object
factory
(stringclassname
); - Create instance of class specified by the fully qualified name classname. The class must either have no constructors or have a default constructor.Returns:null if failed
Example
module foo.bar; class C { this() { x = 10; } int x; } void main() { auto c = cast(C)Object.factory("foo.bar.C"); assert(c !is null && c.x == 10); }
- auto
opEquals
(const Objectlhs
, const Objectrhs
); - Returns true if lhs and rhs are equal.
- struct
Interface
; - Information about an interface. When an object is accessed via an interface, an Interface* appears as the first entry in its vtbl.
- TypeInfo_Class
classinfo
; - .classinfo for this interface (not for containing class)
- size_t
offset
; - offset to Interface 'this' from Object 'this'
- struct
OffsetTypeInfo
; - Array of pairs giving the offset and type information for each member in an aggregate.
- size_t
offset
; - Offset of member from start of object
- TypeInfo
ti
; - TypeInfo for this member
- abstract class
TypeInfo
; - Runtime type information about a type. Can be retrieved for any type using a TypeidExpression.
- const nothrow @trusted size_t
getHash
(scope const void*p
); - Computes a hash of the instance of a type.Parameters:
void* p
pointer to start of instance of the type Returns:the hashBugs:fix https://issues.dlang.org/show_bug.cgi?id=12516 e.g. by changing this to a truly safe interface. - const bool
equals
(in void*p1
, in void*p2
); - Compares two instances for equality.
- const int
compare
(in void*p1
, in void*p2
); - Compares two instances for <, ==, or >.
- const pure nothrow @nogc @property @safe size_t
tsize
(); - Returns size of the type.
- const void
swap
(void*p1
, void*p2
); - Swaps two instances of the type.
- inout pure nothrow @nogc @property inout(TypeInfo)
next
(); - Get TypeInfo for 'next' type, as defined by what kind of type this is, null if none.
- abstract const pure nothrow @nogc @safe const(void)[]
initializer
(); - Return default initializer. If the type should be initialized to all zeros, an array with a null ptr and a length equal to the type size will be returned. For static arrays, this returns the default initializer for a single element of the array, use tsize to get the correct size.
- const pure nothrow @nogc @property @safe uint
flags
(); - Get flags for type: 1 means GC should scan for pointers, 2 means arg of this type is passed in XMM register
- const const(OffsetTypeInfo)[]
offTi
(); - Get type information on the contents of the type; null if not available
- const void
destroy
(void*p
); - Run the destructor on the object and all its sub-objects
- const void
postblit
(void*p
); - Run the postblit on the object and all its sub-objects
- const pure nothrow @nogc @property @safe size_t
talign
(); - Return alignment of type
- nothrow @safe int
argTypes
(out TypeInfoarg1
, out TypeInfoarg2
); - Return internal info on arguments fitting into 8byte. See X86-64 ABI 3.2.3
- const pure nothrow @nogc @property @safe immutable(void)*
rtInfo
(); - Return info used by the garbage collector to do precise collection.
- class
TypeInfo_Class
: object.TypeInfo; - Runtime type information about a class. Can be retrieved from an object instance by using the .classinfo property.
- byte[]
m_init
; - class static initializer (init.length gives size in bytes of class)
- string
name
; - class name
- void*[]
vtbl
; - virtual function pointer table
- Interface[]
interfaces
; - interfaces this class implements
- TypeInfo_Class
base
; - base class
- static const(TypeInfo_Class)
find
(in char[]classname
); - Search all modules for TypeInfo_Class corresponding to classname.Returns:null if not found
- const Object
create
(); - Create instance of Object represented by 'this'.
- struct
ModuleInfo
; - An instance of ModuleInfo is generated into the object file for each compiled module.It provides access to various aspects of the module. It is not generated for betterC.
- const pure nothrow @nogc @property void function()
tlsctor
(); - Returns:module constructor for thread locals, null if there isn't one
- const pure nothrow @nogc @property void function()
tlsdtor
(); - Returns:module destructor for thread locals, null if there isn't one
- const pure nothrow @nogc @property void*
xgetMembers
(); - Returns:address of a module's const(MemberInfo)[] getMembers(string) function, null if there isn't one
- const pure nothrow @nogc @property void function()
ctor
(); - Returns:module constructor, null if there isn't one
- const pure nothrow @nogc @property void function()
dtor
(); - Returns:module destructor, null if there isn't one
- const pure nothrow @nogc @property void function()
ictor
(); - Returns:module order independent constructor, null if there isn't one
- const pure nothrow @nogc @property void function()
unitTest
(); - Returns:address of function that runs the module's unittests, null if there isn't one
- const pure nothrow @nogc @property immutable(ModuleInfo*)[]
importedModules
(); - Returns:array of pointers to the ModuleInfo's of modules imported by this one
- const pure nothrow @nogc @property TypeInfo_Class[]
localClasses
(); - Returns:array of TypeInfo_Class references for classes defined in this module
- const pure nothrow @nogc @property string
name
(); - Returns:name of module, null if no name
- class
Throwable
; - The base class of all thrown objects.All thrown objects must inherit from Throwable. Class Exception, which derives from this class, represents the category of thrown objects that are safe to catch and handle. In principle, one should not catch Throwable objects that are not derived from Exception, as they represent unrecoverable runtime errors. Certain runtime guarantees may fail to hold when these errors are thrown, making it unsafe to continue execution after catching them.
- string
msg
; - A message describing the error.
- string
file
; - The file name of the D source code corresponding with where the error was thrown from.
- size_t
line
; - The line number of the D source code corresponding with where the error was thrown from.
- TraceInfo
info
; - The stack trace of where the error happened. This is an opaque object that can either be converted to string, or iterated over with foreach to extract the items in the stack trace (as strings).
- inout pure nothrow @nogc @property return scope @safe inout(Throwable)
next
(); - Returns:A reference to the next error in the list. This is used when a new Throwable is thrown from inside a catch block. The originally caught Exception will be chained to the new Throwable via this field.
- pure nothrow @nogc @property scope @safe void
next
(Throwabletail
); - Replace next in chain with
tail
. Use chainTogether instead if at all possible. - final pure nothrow @nogc ref return scope @system uint
refcount
(); - Returns:mutable reference to the reference count, which is 0 - allocated by the GC, 1 - allocated by d_newThrowable(), and >=2 which is the reference count + 1
- int
opApply
(scope int delegate(Throwable)dg
); - Loop over the chain of Throwables.
- static pure nothrow @nogc @system Throwable
chainTogether
(return scope Throwablee1
, return scope Throwablee2
); - Append
e2
to chain of exceptions that starts withe1
.Parameters:Throwable e1
start of chain (can be null) Throwable e2
second part of chain (can be null) Returns:Throwable that is at the start of the chain; null if bothe1
ande2
are null - string
toString
(); - Overrides Object.toString and returns the error message. Internally this forwards to the toString overload that takes a sink delegate.
- const void
toString
(scope void delegate(in char[])sink
); - The Throwable hierarchy uses a toString overload that takes a sink delegate to avoid GC allocations, which cannot be performed in certain error situations. Override this toString method to customize the error message.
- const const(char)[]
message
(); - Get the message describing the error. Base behavior is to return the Throwable.msg field. Override to return some other error message.Returns:Error message
- class
Exception
: object.Throwable; - The base class of all errors that are safe to catch and handle.In principle, only thrown objects derived from this class are safe to catch inside a catch block. Thrown objects not derived from Exception represent runtime errors that should not be caught, as certain runtime guarantees may not hold, making it unsafe to continue program execution.
- pure nothrow @nogc @safe this(string
msg
, stringfile
= __FILE__, size_tline
= __LINE__, ThrowablenextInChain
= null); - Creates a new instance of Exception. The nextInChain parameter is used internally and should always be null when passed by user code. This constructor does not automatically throw the newly-created Exception; the throw statement should be used for that purpose.
- class
Error
: object.Throwable; - The base class of all unrecoverable runtime errors.This represents the category of Throwable objects that are not safe to catch and handle. In principle, one should not catch Error objects, as they represent unrecoverable runtime errors. Certain runtime guarantees may fail to hold when these errors are thrown, making it unsafe to continue execution after catching them.
- pure nothrow @nogc @safe this(string
msg
, ThrowablenextInChain
= null); - Creates a new instance of Error. The nextInChain parameter is used internally and should always be null when passed by user code. This constructor does not automatically throw the newly-created Error; the throw statement should be used for that purpose.
- Throwable
bypassedException
; - The first Exception which was bypassed when this Error was thrown, or null if no Exceptions were pending.
- void
destroy
(T)(Tobj
)
if (is(T == class));
voiddestroy
(T)(Tobj
)
if (is(T == interface));
voiddestroy
(T)(ref Tobj
)
if (is(T == struct));
voiddestroy
(T : U[n], U, size_t n)(ref Tobj
)
if (!is(T == struct));
voiddestroy
(T)(ref Tobj
)
if (!is(T == struct) && !is(T == interface) && !is(T == class) && !_isStaticArray!T); - Destroys the given object and sets it back to its initial state. It's used to destroy an object, calling its destructor or finalizer so it no longer references any other objects. It does not initiate a GC cycle or free any GC memory.Examples:Reference type demonstration
class C { static int dtorCount; string s = "S"; ~this() { dtorCount++; } } C c = new C(); assert(c.dtorCount == 0); // destructor not yet called assert(c.s == "S"); // initial state `c.s` is `"S"` c.s = "T"; assert(c.s == "T"); // `c.s` is `"T"` destroy(c); assert(c.dtorCount == 1); // `c`'s destructor was called assert(c.s == "S"); // `c.s` is back to its inital state, `"S"`
Examples:Value type demonstrationint i; assert(i == 0); // `i`'s initial state is `0` i = 1; assert(i == 1); // `i` changed to `1` destroy(i); assert(i == 0); // `i` is back to its initial state `0`
- pure nothrow @property @trusted size_t
capacity
(T)(T[]arr
); - (Property) Gets the current capacity of a slice. The capacity is the size that the slice can grow to before the underlying array must be reallocated or extended.If an append must reallocate a slice with no possibility of extension, then 0 is returned. This happens when the slice references a static array, or if another slice references elements past the end of the current slice.
Note The capacity of a slice may be impacted by operations on other slices.
Examples://Static array slice: no capacity int[4] sarray = [1, 2, 3, 4]; int[] slice = sarray[]; assert(sarray.capacity == 0); //Appending to slice will reallocate to a new array slice ~= 5; assert(slice.capacity >= 5); //Dynamic array slices int[] a = [1, 2, 3, 4]; int[] b = a[1 .. $]; int[] c = a[1 .. $ - 1]; debug(SENTINEL) {} else // non-zero capacity very much depends on the array and GC implementation { assert(a.capacity != 0); assert(a.capacity == b.capacity + 1); //both a and b share the same tail } assert(c.capacity == 0); //an append to c must relocate c.
- pure nothrow @trusted size_t
reserve
(T)(ref T[]arr
, size_tnewcapacity
); - Reserves capacity for a slice. The capacity is the size that the slice can grow to before the underlying array must be reallocated or extended.Returns:The new capacity of the array (which may be larger than the requested capacity).Examples:
//Static array slice: no capacity. Reserve relocates. int[4] sarray = [1, 2, 3, 4]; int[] slice = sarray[]; auto u = slice.reserve(8); assert(u >= 8); assert(sarray.ptr !is slice.ptr); assert(slice.capacity == u); //Dynamic array slices int[] a = [1, 2, 3, 4]; a.reserve(8); //prepare a for appending 4 more items auto p = a.ptr; u = a.capacity; a ~= [5, 6, 7, 8]; assert(p == a.ptr); //a should not have been reallocated assert(u == a.capacity); //a should not have been extended
- nothrow ref inout(T[])
assumeSafeAppend
(T)(auto ref inout(T[])arr
); - Assume that it is safe to append to this array. Appends made to this array after calling this function may append in place, even if the array was a slice of a larger array to begin with.Use this only when it is certain there are no elements in use beyond the array in the memory block. If there are, those elements will be overwritten by appending to this array.
Warning Calling this function, and then using references to data located after the given array results in undefined behavior.
Returns:The input is returned.Examples:int[] a = [1, 2, 3, 4]; // Without assumeSafeAppend. Appending relocates. int[] b = a [0 .. 3]; b ~= 5; assert(a.ptr != b.ptr); debug(SENTINEL) {} else { // With assumeSafeAppend. Appending overwrites. int[] c = a [0 .. 3]; c.assumeSafeAppend() ~= 5; assert(a.ptr == c.ptr); }
- bool
_ArrayEq
(T1, T2)(T1[]a1
, T2[]a2
); - Helper function used to see if two containers of different types have the same contents in the same sequence.
- size_t
hashOf
(T)(auto ref Targ
, size_tseed
= 0); - Calculates the hash value of arg with seed initial value. The result may not be equal to typeid(T).getHash(&
arg
).Parameters:T arg
argument to calculate the hash value of size_t seed
the seed value (may be used for hash chaining) Return calculated hash value of arg
Examples:class MyObject { size_t myMegaHash() const @safe pure nothrow { return 42; } } struct Test { int a; string b; MyObject c; size_t toHash() const pure nothrow { size_t hash = a.hashOf(); hash = b.hashOf(hash); size_t h1 = c.myMegaHash(); hash = h1.hashOf(hash); //Mix two hash values return hash; } }
- enum auto
RTInfo
(T); - Create RTInfo for type T
- @property auto
dup
(T)(T[]a
)
if (!is(const(T) : T));
@property T[]dup
(T)(const(T)[]a
)
if (is(const(T) : T)); - Provide the .dup array property.
- @property immutable(T)[]
idup
(T)(T[]a
);
@property immutable(T)[]idup
(T : void)(const(T)[]a
); - Provide the .idup array property.
Copyright © 1999-2018 by the D Language Foundation | Page generated by
Ddoc on Wed May 2 05:57:02 2018