std.range.primitives
isInputRange | Tests if something is an input range, defined to be something from which one can sequentially read data using the primitives front, popFront, and empty. |
isOutputRange | Tests if something is an output range, defined to be something to which one can sequentially write data using the put primitive. |
isForwardRange | Tests if something is a forward range, defined to be an input range with the additional capability that one can save one's current position with the save primitive, thus allowing one to iterate over the same range multiple times. |
isBidirectionalRange | Tests if something is a bidirectional range, that is, a forward range that allows reverse traversal using the primitives back and popBack. |
isRandomAccessRange | Tests if something is a random access range, which is a bidirectional range that also supports the array subscripting operation via the primitive opIndex. |
hasMobileElements | Tests if a given range's elements can be moved around using the primitives moveFront, moveBack, or moveAt. |
ElementType | Returns the element type of a given range. |
ElementEncodingType | Returns the encoding element type of a given range. |
hasSwappableElements | Tests if a range is a forward range with swappable elements. |
hasAssignableElements | Tests if a range is a forward range with mutable elements. |
hasLvalueElements | Tests if a range is a forward range with elements that can be passed by reference and have their address taken. |
hasLength | Tests if a given range has the length attribute. |
isInfinite | Tests if a given range is an infinite range. |
hasSlicing | Tests if a given range supports the array slicing operation R[x .. y]. |
popFrontN | Advances a given range by up to n elements. |
popBackN | Advances a given bidirectional range from the right by up to n elements. |
popFrontExactly | Advances a given range by up exactly n elements. |
popBackExactly | Advances a given bidirectional range from the right by exactly n elements. |
moveFront | Removes the front element of a range. |
moveBack | Removes the back element of a bidirectional range. |
moveAt | Removes the i'th element of a random-access range. |
walkLength | Computes the length of any range in O(n) time. |
put | Outputs element e to a range. |
Source std/range/primitives.d
- enum bool
isInputRange
(R); - Returns true if R is an input range. An input range must define the primitives empty, popFront, and front. The following code should compile for any input range.
R r; // can define a range object if (r.empty) {} // can test for empty r.popFront(); // can invoke popFront() auto h = r.front; // can get the front of the range of non-void type
The following are rules of input ranges are assumed to hold true in all Phobos code. These rules are not checkable at compile-time, so not conforming to these rules when writing ranges or range based code will result in undefined behavior.- r.empty returns false if and only if there is more data available in the range.
- r.empty evaluated multiple times, without calling r.popFront, or otherwise mutating the range object or the underlying data, yields the same result for every evaluation.
- r.front returns the current element in the range. It may return by value or by reference.
- r.front can be legally evaluated if and only if evaluating r.empty has, or would have, equaled false.
- r.front evaluated multiple times, without calling r.popFront, or otherwise mutating the range object or the underlying data, yields the same result for every evaluation.
- r.popFront advances to the next element in the range.
- r.popFront can be called if and only if evaluating r.empty has, or would have, equaled false.
See Also:The header of std.range for tutorials on ranges.Parameters:R type to be tested Returns:true if R is an input range, false if notExamples:struct A {} struct B { void popFront(); @property bool empty(); @property int front(); } static assert(!isInputRange!A); static assert( isInputRange!B); static assert( isInputRange!(int[])); static assert( isInputRange!(char[])); static assert(!isInputRange!(char[4])); static assert( isInputRange!(inout(int)[])); static struct NotDefaultConstructible { @disable this(); void popFront(); @property bool empty(); @property int front(); } static assert( isInputRange!NotDefaultConstructible); static struct NotDefaultConstructibleOrCopyable { @disable this(); @disable this(this); void popFront(); @property bool empty(); @property int front(); } static assert(isInputRange!NotDefaultConstructibleOrCopyable); static struct Frontless { void popFront(); @property bool empty(); } static assert(!isInputRange!Frontless); static struct VoidFront { void popFront(); @property bool empty(); void front(); } static assert(!isInputRange!VoidFront);
- void
put
(R, E)(ref Rr
, Ee
); - Outputs
e
tor
. The exact effect is dependent upon the two types. Several cases are accepted, as described below. The code snippets are attempted in order, and the first to compile "wins" and gets evaluated.In this table "doPut" is a method that placese
intor
, using the correct primitive:r
.put
(e
) if R definesput
, r.front = e ifr
is an input range (followed byr
.popFront()), orr
(e
) otherwise.Code Snippet Scenario r
.doPut(e
);R specifically accepts an E. r.doPut([ e ]); R specifically accepts an E[]. r
.putChar(e
);R accepts some form of string or character. put will transcode the character e
accordingly.for (; !e.empty; e.popFront()) put(r, e.front); Copying range E into R. Tip
put
should not be used "UFCS-style", e.g.r
.put
(e
). Doing this may call R.put
directly, by-passing any transformation feature provided by Range.put
. put(r, e) is prefered.Examples:When an output range'sput
method only accepts elements of type T, use the globalput
to handle outputting a T[] to the range or vice-versa.import std.traits : isSomeChar; static struct A { string data; void put(C)(C c) if (isSomeChar!C) { data ~= c; } } static assert(isOutputRange!(A, char)); auto a = A(); put(a, "Hello"); writeln(a.data); // "Hello"
Examples:put
treats dynamic arrays as array slices, and will call popFront on the slice after an element has been copied. Be sure to save the position of the array before callingput
.int[] a = [1, 2, 3], b = [10, 20]; auto c = a; put(a, b); writeln(c); // [10, 20, 3] // at this point, a was advanced twice, so it only contains // its last element while c represents the whole array writeln(a); // [3]
Examples:It's also possible toput
any width strings or characters into narrow strings -- put does the conversion for you. Note that putting the same width character as the target buffer type is nothrow, but transcoding can throw a std.utf.UTFException.// the elements must be mutable, so using string or const(char)[] // won't compile char[] s1 = new char[13]; auto r1 = s1; put(r1, "Hello, World!"w); writeln(s1); // "Hello, World!"
- enum bool
isOutputRange
(R, E); - Returns true if R is an output range for elements of type E. An output range is defined functionally as a range that supports the operation put(r, e) as defined above.See Also:The header of std.range for tutorials on ranges.Examples:
void myprint(scope const(char)[] s) { } static assert(isOutputRange!(typeof(&myprint), char)); static assert( isOutputRange!(char[], char)); static assert( isOutputRange!(dchar[], wchar)); static assert( isOutputRange!(dchar[], dchar));
- enum bool
isForwardRange
(R); - Returns true if R is a forward range. A forward range is an input range r that can save "checkpoints" by saving r.save to another value of type R. Notable examples of input ranges that are not forward ranges are file/socket ranges; copying such a range will not save the position in the stream, and they most likely reuse an internal buffer as the entire stream does not sit in memory. Subsequently, advancing either the original or the copy will advance the stream, so the copies are not independent.The following code should compile for any forward range.
static assert(isInputRange!R); R r1; auto s1 = r1.save; static assert(is(typeof(s1) == R));
Saving a range is not duplicating it; in the example above, r1 and r2 still refer to the same underlying data. They just navigate that data independently. The semantics of a forward range (not checkable during compilation) are the same as for an input range, with the additional requirement that backtracking must be possible by saving a copy of the range object with save and using it later. save behaves in many ways like a copy constructor, and its implementation typically is done using copy construction. The existence of a copy constructor, however, does not imply the range is a forward range. For example, a range that reads from a TTY consumes its input and cannot save its place and read it again, and so cannot be a forward range and cannot have a save function.See Also:The header of std.range for tutorials on ranges.Examples:static assert(!isForwardRange!(int)); static assert( isForwardRange!(int[])); static assert( isForwardRange!(inout(int)[]));
- enum bool
isBidirectionalRange
(R); - Returns true if R is a bidirectional range. A bidirectional range is a forward range that also offers the primitives back and popBack. The following code should compile for any bidirectional range.The semantics of a bidirectional range (not checkable during compilation) are assumed to be the following (r is an object of type R):
- r.back returns (possibly a reference to) the last element in the range. Calling r.back is allowed only if calling r.empty has, or would have, returned false.
See Also:The header of std.range for tutorials on ranges.Examples:alias R = int[]; R r = [0,1]; static assert(isForwardRange!R); // is forward range r.popBack(); // can invoke popBack auto t = r.back; // can get the back of the range auto w = r.front; static assert(is(typeof(t) == typeof(w))); // same type for front and back
- enum bool
isRandomAccessRange
(R); - Returns true if R is a random-access range. A random-access range is a bidirectional range that also offers the primitive opIndex, OR an infinite forward range that offers opIndex. In either case, the range must either offer length or be infinite. The following code should compile for any random-access range.The semantics of a random-access range (not checkable during compilation) are assumed to be the following (r is an object of type R):
- r.opIndex(n) returns a reference to the nth element in the range.
See Also:The header of std.range for tutorials on ranges.Examples:import std.traits : isAggregateType, isAutodecodableString; alias R = int[]; // range is finite and bidirectional or infinite and forward. static assert(isBidirectionalRange!R || isForwardRange!R && isInfinite!R); R r = [0,1]; auto e = r[1]; // can index auto f = r.front; static assert(is(typeof(e) == typeof(f))); // same type for indexed and front static assert(!(isAutodecodableString!R && !isAggregateType!R)); // narrow strings cannot be indexed as ranges static assert(hasLength!R || isInfinite!R); // must have length or be infinite // $ must work as it does with arrays if opIndex works with $ static if (is(typeof(r[$]))) { static assert(is(typeof(f) == typeof(r[$]))); // $ - 1 doesn't make sense with infinite ranges but needs to work // with finite ones. static if (!isInfinite!R) static assert(is(typeof(f) == typeof(r[$ - 1]))); }
- enum bool
hasMobileElements
(R); - Returns true iff R is an input range that supports the moveFront primitive, as well as moveBack and moveAt if it's a bidirectional or random access range. These may be explicitly implemented, or may work via the default behavior of the module level functions moveFront and friends. The following code should compile for any range with mobile elements.
alias E = ElementType!R; R r; static assert(isInputRange!R); static assert(is(typeof(moveFront(r)) == E)); static if (isBidirectionalRange!R) static assert(is(typeof(moveBack(r)) == E)); static if (isRandomAccessRange!R) static assert(is(typeof(moveAt(r, 0)) == E));
Examples:import std.algorithm.iteration : map; import std.range : iota, repeat; static struct HasPostblit { this(this) {} } auto nonMobile = map!"a"(repeat(HasPostblit.init)); static assert(!hasMobileElements!(typeof(nonMobile))); static assert( hasMobileElements!(int[])); static assert( hasMobileElements!(inout(int)[])); static assert( hasMobileElements!(typeof(iota(1000)))); static assert( hasMobileElements!( string)); static assert( hasMobileElements!(dstring)); static assert( hasMobileElements!( char[])); static assert( hasMobileElements!(dchar[]));
- template
ElementType
(R) - The element type of R. R does not have to be a range. The element type is determined as the type yielded by r.front for an object r of type R. For example,
ElementType
!(T[]) is T if T[] isn't a narrow string; if it is, the element type is dchar. If R doesn't have front,ElementType
!R is void.Examples:import std.range : iota; // Standard arrays: returns the type of the elements of the array static assert(is(ElementType!(int[]) == int)); // Accessing .front retrieves the decoded dchar static assert(is(ElementType!(char[]) == dchar)); // rvalue static assert(is(ElementType!(dchar[]) == dchar)); // lvalue // Ditto static assert(is(ElementType!(string) == dchar)); static assert(is(ElementType!(dstring) == immutable(dchar))); // For ranges it gets the type of .front. auto range = iota(0, 10); static assert(is(ElementType!(typeof(range)) == int));
- template
ElementEncodingType
(R) - The encoding element type of R. For narrow strings (char[], wchar[] and their qualified variants including string and wstring),
ElementEncodingType
is the character type of the string. For all other types,ElementEncodingType
is the same as ElementType.Examples:import std.range : iota; // internally the range stores the encoded type static assert(is(ElementEncodingType!(char[]) == char)); static assert(is(ElementEncodingType!(wstring) == immutable(wchar))); static assert(is(ElementEncodingType!(byte[]) == byte)); auto range = iota(0, 10); static assert(is(ElementEncodingType!(typeof(range)) == int));
- enum bool
hasSwappableElements
(R); - Returns true if R is an input range and has swappable elements. The following code should compile for any range with swappable elements.
R r; static assert(isInputRange!R); swap(r.front, r.front); static if (isBidirectionalRange!R) swap(r.back, r.front); static if (isRandomAccessRange!R) swap(r[0], r.front);
Examples:static assert(!hasSwappableElements!(const int[])); static assert(!hasSwappableElements!(const(int)[])); static assert(!hasSwappableElements!(inout(int)[])); static assert( hasSwappableElements!(int[])); static assert(!hasSwappableElements!( string)); static assert(!hasSwappableElements!(dstring)); static assert(!hasSwappableElements!( char[])); static assert( hasSwappableElements!(dchar[]));
- enum bool
hasAssignableElements
(R); - Returns true if R is an input range and has mutable elements. The following code should compile for any range with assignable elements.
R r; static assert(isInputRange!R); r.front = r.front; static if (isBidirectionalRange!R) r.back = r.front; static if (isRandomAccessRange!R) r[0] = r.front;
Examples:static assert(!hasAssignableElements!(const int[])); static assert(!hasAssignableElements!(const(int)[])); static assert( hasAssignableElements!(int[])); static assert(!hasAssignableElements!(inout(int)[])); static assert(!hasAssignableElements!( string)); static assert(!hasAssignableElements!(dstring)); static assert(!hasAssignableElements!( char[])); static assert( hasAssignableElements!(dchar[]));
- enum bool
hasLvalueElements
(R); - Tests whether the range R has lvalue elements. These are defined as elements that can be passed by reference and have their address taken. The following code should compile for any range with lvalue elements.
void passByRef(ref ElementType!R stuff); ... static assert(isInputRange!R); passByRef(r.front); static if (isBidirectionalRange!R) passByRef(r.back); static if (isRandomAccessRange!R) passByRef(r[0]);
- template
hasLength
(R) - Yields true if R has a length member that returns a value of size_t type. R does not have to be a range. If R is a range, algorithms in the standard library are only guaranteed to support length with type size_t.Note that length is an optional primitive as no range must implement it. Some ranges do not store their length explicitly, some cannot compute it without actually exhausting the range (e.g. socket streams), and some other ranges may be infinite. Although narrow string types (char[], wchar[], and their qualified derivatives) do define a length property,
hasLength
yields false for them. This is because a narrow string's length does not reflect the number of characters, but instead the number of encoding units, and as such is not useful with range-oriented algorithms. To use strings as random-access ranges with length, use std.string.representation or std.utf.byCodeUnit.Examples:static assert(!hasLength!(char[])); static assert( hasLength!(int[])); static assert( hasLength!(inout(int)[])); struct A { size_t length() { return 0; } } struct B { @property size_t length() { return 0; } } static assert( hasLength!(A)); static assert( hasLength!(B));
- template
isInfinite
(R) - Returns true if R is an infinite input range. An infinite input range is an input range that has a statically-defined enumerated member called empty that is always false, for example:
struct MyInfiniteRange { enum bool empty = false; ... }
Examples:import std.range : Repeat; static assert(!isInfinite!(int[])); static assert( isInfinite!(Repeat!(int)));
- enum bool
hasSlicing
(R); - Returns true if R offers a slicing operator with integral boundaries that returns a forward range type.For finite ranges, the result of opSlice must be of the same type as the original range type. If the range defines opDollar, then it must support subtraction. For infinite ranges, when not using opDollar, the result of opSlice must be the result of take or takeExactly on the original range (they both return the same type for infinite ranges). However, when using opDollar, the result of opSlice must be that of the original range type. The following expression must be true for
hasSlicing
to be true:isForwardRange!R && !isNarrowString!R && is(ReturnType!((R r) => r[1 .. 1].length) == size_t) && (is(typeof(lvalueOf!R[1 .. 1]) == R) || isInfinite!R) && (!is(typeof(lvalueOf!R[0 .. $])) || is(typeof(lvalueOf!R[0 .. $]) == R)) && (!is(typeof(lvalueOf!R[0 .. $])) || isInfinite!R || is(typeof(lvalueOf!R[0 .. $ - 1]) == R)) && is(typeof((ref R r) { static assert(isForwardRange!(typeof(r[1 .. 2]))); }));
Examples:import std.range : takeExactly; static assert( hasSlicing!(int[])); static assert( hasSlicing!(const(int)[])); static assert(!hasSlicing!(const int[])); static assert( hasSlicing!(inout(int)[])); static assert(!hasSlicing!(inout int [])); static assert( hasSlicing!(immutable(int)[])); static assert(!hasSlicing!(immutable int[])); static assert(!hasSlicing!string); static assert( hasSlicing!dstring); enum rangeFuncs = "@property int front();" ~ "void popFront();" ~ "@property bool empty();" ~ "@property auto save() { return this; }" ~ "@property size_t length();"; struct A { mixin(rangeFuncs); int opSlice(size_t, size_t); } struct B { mixin(rangeFuncs); B opSlice(size_t, size_t); } struct C { mixin(rangeFuncs); @disable this(); C opSlice(size_t, size_t); } struct D { mixin(rangeFuncs); int[] opSlice(size_t, size_t); } static assert(!hasSlicing!(A)); static assert( hasSlicing!(B)); static assert( hasSlicing!(C)); static assert(!hasSlicing!(D)); struct InfOnes { enum empty = false; void popFront() {} @property int front() { return 1; } @property InfOnes save() { return this; } auto opSlice(size_t i, size_t j) { return takeExactly(this, j - i); } auto opSlice(size_t i, Dollar d) { return this; } struct Dollar {} Dollar opDollar() const { return Dollar.init; } } static assert(hasSlicing!InfOnes);
- auto
walkLength
(Range)(Rangerange
)
if (isInputRange!Range && !isInfinite!Range);
autowalkLength
(Range)(Rangerange
, const size_tupTo
)
if (isInputRange!Range); - This is a best-effort implementation of length for any kind of range.If hasLength!Range, simply returns
range
.length without checkingupTo
(when specified). Otherwise, walks the range through its length and returns the number of elements seen. Performes Ο(n) evaluations ofrange
.empty andrange
.popFront(), where n is the effective length of range. TheupTo
parameter is useful to "cut the losses" in case the interest is in seeing whether the range has at least some number of elements. If the parameterupTo
is specified, stops if upTo steps have been taken and returnsupTo
. Infinite ranges are compatible, provided the parameterupTo
is specified, in which case the implementation simply returns upTo.Examples:import std.range : iota; writeln(10.iota.walkLength); // 10 // iota has a length function, and therefore the // doesn't have to be walked, and the upTo // parameter is ignored writeln(10.iota.walkLength(5)); // 10
- size_t
popFrontN
(Range)(ref Ranger
, size_tn
)
if (isInputRange!Range);
size_tpopBackN
(Range)(ref Ranger
, size_tn
)
if (isBidirectionalRange!Range); popFrontN
eagerly advancesr
itself (not a copy) up ton
times (by callingr
.popFront).popFrontN
takesr
by ref, so it mutates the original range. Completes in Ο(1) steps for ranges that support slicing and have length. Completes in Ο(n) time for all other ranges.popBackN
behaves the same aspopFrontN
but instead removes elements from the back of the (bidirectional) range instead of the front.Returns:How muchr
was actually advanced, which may be less thann
ifr
did not have at leastn
elements.See Also:Examples:int[] a = [ 1, 2, 3, 4, 5 ]; a.popFrontN(2); writeln(a); // [3, 4, 5] a.popFrontN(7); writeln(a); // []
Examples:import std.algorithm.comparison : equal; import std.range : iota; auto LL = iota(1L, 7L); auto r = popFrontN(LL, 2); assert(equal(LL, [3L, 4L, 5L, 6L])); writeln(r); // 2
Examples:int[] a = [ 1, 2, 3, 4, 5 ]; a.popBackN(2); writeln(a); // [1, 2, 3] a.popBackN(7); writeln(a); // []
Examples:import std.algorithm.comparison : equal; import std.range : iota; auto LL = iota(1L, 7L); auto r = popBackN(LL, 2); assert(equal(LL, [1L, 2L, 3L, 4L])); writeln(r); // 2
- void
popFrontExactly
(Range)(ref Ranger
, size_tn
)
if (isInputRange!Range);
voidpopBackExactly
(Range)(ref Ranger
, size_tn
)
if (isBidirectionalRange!Range); - Eagerly advances
r
itself (not a copy) exactlyn
times (by callingr
.popFront).popFrontExactly
takesr
by ref, so it mutates the original range. Completes in Ο(1) steps for ranges that support slicing, and have either length or are infinite. Completes in Ο(n) time for all other ranges.Note Unlike popFrontN,
popFrontExactly
will assume that the range holds at leastn
elements. This makespopFrontExactly
faster than popFrontN, but it also means that if range does not contain at leastn
elements, it will attempt to call popFront on an empty range, which is undefined behavior. So, only usepopFrontExactly
when it is guaranteed that range holds at leastn
elements.popBackExactly
will behave the same but instead removes elements from the back of the (bidirectional) range instead of the front.See Also:Examples:import std.algorithm.comparison : equal; import std.algorithm.iteration : filterBidirectional; auto a = [1, 2, 3]; a.popFrontExactly(1); writeln(a); // [2, 3] a.popBackExactly(1); writeln(a); // [2] string s = "日本語"; s.popFrontExactly(1); writeln(s); // "本語" s.popBackExactly(1); writeln(s); // "本" auto bd = filterBidirectional!"true"([1, 2, 3]); bd.popFrontExactly(1); assert(bd.equal([2, 3])); bd.popBackExactly(1); assert(bd.equal([2]));
- ElementType!R
moveFront
(R)(Rr
); - Moves the front of
r
out and returns it. Leavesr
.front in a destroyable state that does not allocate any resources (usually equal to its .init value).Examples:auto a = [ 1, 2, 3 ]; writeln(moveFront(a)); // 1 writeln(a.length); // 3 // define a perfunctory input range struct InputRange { enum bool empty = false; enum int front = 7; void popFront() {} int moveFront() { return 43; } } InputRange r; // calls r.moveFront writeln(moveFront(r)); // 43
- ElementType!R
moveBack
(R)(Rr
); - Moves the back of
r
out and returns it. Leavesr
.back in a destroyable state that does not allocate any resources (usually equal to its .init value).Examples:struct TestRange { int payload = 5; @property bool empty() { return false; } @property TestRange save() { return this; } @property ref int front() return { return payload; } @property ref int back() return { return payload; } void popFront() { } void popBack() { } } static assert(isBidirectionalRange!TestRange); TestRange r; auto x = moveBack(r); writeln(x); // 5
- ElementType!R
moveAt
(R)(Rr
, size_ti
); - Moves element at index
i
ofr
out and returns it. Leaves r[i] in a destroyable state that does not allocate any resources (usually equal to its .init value).Examples:auto a = [1,2,3,4]; foreach (idx, it; a) { writeln(it); // moveAt(a, idx) }
- @property bool
empty
(T)(auto ref scope Ta
)
if (is(typeof(a
.length) : size_t)); - Implements the range interface primitive
empty
for types that obey hasLength property and for narrow strings. Due to the fact that nonmember functions can be called with the first argument using the dot notation,a
.empty
is equivalent toempty
(a
).Examples:auto a = [ 1, 2, 3 ]; assert(!a.empty); assert(a[3 .. $].empty); int[string] b; assert(b.empty); b["zero"] = 0; assert(!b.empty);
- pure nothrow @nogc @property @safe inout(T)[]
save
(T)(return scope inout(T)[]a
); - Implements the range interface primitive
save
for built-in arrays. Due to the fact that nonmember functions can be called with the first argument using the dot notation, array.save
is equivalent tosave
(array). The function does not duplicate the content of the array, it simply returns its argument.Examples:auto a = [ 1, 2, 3 ]; auto b = a.save; assert(b is a);
- pure nothrow @nogc @safe void
popFront
(T)(ref scope inout(T)[]a
)
if (!isAutodecodableString!(T[]) && !is(T[] == void[]));
pure nothrow @trusted voidpopFront
(C)(ref scope inout(C)[]str
)
if (isAutodecodableString!(C[])); - Implements the range interface primitive
popFront
for built-in arrays. Due to the fact that nonmember functions can be called with the first argument using the dot notation, array.popFront
is equivalent topopFront
(array). For narrow strings,popFront
automatically advances to the next code point.Examples:auto a = [ 1, 2, 3 ]; a.popFront(); writeln(a); // [2, 3]
- pure nothrow @nogc @safe void
popBack
(T)(ref scope inout(T)[]a
)
if (!isAutodecodableString!(T[]) && !is(T[] == void[]));
pure @safe voidpopBack
(T)(ref scope inout(T)[]a
)
if (isAutodecodableString!(T[])); - Implements the range interface primitive
popBack
for built-in arrays. Due to the fact that nonmember functions can be called with the first argument using the dot notation, array.popBack
is equivalent topopBack
(array). For narrow strings, popFront automatically eliminates the last code point.Examples:auto a = [ 1, 2, 3 ]; a.popBack(); writeln(a); // [1, 2]
- enum bool
autodecodeStrings
; EXPERIMENTAL to try out removing autodecoding, set the version NoAutodecodeStrings. Most things are expected to fail with this version currently.
- pure nothrow @nogc @property ref @safe inout(T)
front
(T)(return scope inout(T)[]a
)
if (!isAutodecodableString!(T[]) && !is(T[] == void[]));
pure @property @safe dcharfront
(T)(scope const(T)[]a
)
if (isAutodecodableString!(T[])); - Implements the range interface primitive
front
for built-in arrays. Due to the fact that nonmember functions can be called with the first argument using the dot notation, array.front
is equivalent tofront
(array). For narrow strings, front automatically returns the first code point as a dchar.Examples:int[] a = [ 1, 2, 3 ]; writeln(a.front); // 1
- pure nothrow @nogc @property ref @safe inout(T)
back
(T)(return scope inout(T)[]a
)
if (!isAutodecodableString!(T[]) && !is(T[] == void[]));
pure @property @safe dcharback
(T)(scope const(T)[]a
)
if (isAutodecodableString!(T[])); - Implements the range interface primitive
back
for built-in arrays. Due to the fact that nonmember functions can be called with the first argument using the dot notation, array.back
is equivalent toback
(array). For narrow strings, back automatically returns the last code point as a dchar.Examples:int[] a = [ 1, 2, 3 ]; writeln(a.back); // 3 a.back += 4; writeln(a.back); // 7