Report a bug
If you spot a problem with this page, click here to create a Bugzilla issue.
Improve this page
Quickly fork, edit online, and submit a pull request for this page.
Requires a signed-in GitHub account. This works well for small changes.
If you'd like to make larger changes you may want to consider using
a local clone.
std.bitmanip
Bit-level manipulation facilities.
License:
Authors:
Walter Bright,
Andrei Alexandrescu,
Jonathan M Davis,
Alex Rønne Petersen,
Damian Ziemba,
Amaury SECHET
Source: std/bitmanip.d
- template
bitfields
(T...) - Allows creating bit fields inside structs and classes.
Example:
struct A { int a; mixin(bitfields!( uint, "x", 2, int, "y", 3, uint, "z", 2, bool, "flag", 1)); } A obj; obj.x = 2; obj.z = obj.x;
The example above creates a bitfield pack of eight bits, which fit in one ubyte. Thebitfields
are allocated starting from the least significant bit, i.e. x occupies the two least significant bits of thebitfields
storage. The sum of all bit lengths in one bitfield instantiation must be exactly 8, 16, 32, or 64. If padding is needed, just allocate one bitfield with an empty name.Example:
struct A { mixin(bitfields!( bool, "flag1", 1, bool, "flag2", 1, uint, "", 6)); }
The type of a bit field can be any integral type or enumerated type. The most efficient type to store inbitfields
is bool, followed by unsigned types, followed by signed types. - enum auto
taggedPointer
(T : T*, string name, Ts...); - This string mixin generator allows one to create tagged pointers inside structs and classes.A tagged pointer uses the bits known to be zero in a normal pointer or class reference to store extra information. For example, a pointer to an integer must be 4-byte aligned, so there are 2 bits that are always known to be zero. One can store a 2-bit integer there. The example above creates a tagged pointer in the struct A. The pointer is of type uint* as specified by the first argument, and is named x, as specified by the second argument. Following arguments works the same way as bitfield's. The bitfield must fit into the bits known to be zero because of the pointer alignment.Examples:
struct A { int a; mixin(taggedPointer!( uint*, "x", bool, "b1", 1, bool, "b2", 1)); } A obj; obj.x = new uint; obj.b1 = true; obj.b2 = false;
- template
taggedClassRef
(T, string name, Ts...) if (is(T == class)) - This string mixin generator allows one to create tagged class reference inside structs and classes.A tagged class reference uses the bits known to be zero in a normal class reference to store extra information. For example, a pointer to an integer must be 4-byte aligned, so there are 2 bits that are always known to be zero. One can store a 2-bit integer there. The example above creates a tagged reference to an Object in the struct A. This expects the same parameters as taggedPointer, except the first argument which must be a class type instead of a pointer type.Examples:
struct A { int a; mixin(taggedClassRef!( Object, "o", uint, "i", 2)); } A obj; obj.o = new Object(); obj.i = 3;
- struct
FloatRep
; - Allows manipulating the fraction, exponent, and sign parts of a float separately. The definition is:
struct FloatRep { union { float value; mixin(bitfields!( uint, "fraction", 23, ubyte, "exponent", 8, bool, "sign", 1)); } enum uint bias = 127, fractionBits = 23, exponentBits = 8, signBits = 1; }
- struct
DoubleRep
; - Allows manipulating the fraction, exponent, and sign parts of a double separately. The definition is:
struct DoubleRep { union { double value; mixin(bitfields!( ulong, "fraction", 52, ushort, "exponent", 11, bool, "sign", 1)); } enum uint bias = 1023, signBits = 1, fractionBits = 52, exponentBits = 11; }
- struct
BitArray
; - An array of bits.
- const pure nothrow @nogc @property @safe size_t
dim
(); - Gets the amount of native words backing this BitArray.
- const pure nothrow @nogc @property @safe size_t
length
(); - Gets the amount of bits in the BitArray.
- pure nothrow @property @system size_t
length
(size_tnewlen
); - Sets the amount of bits in the BitArray. Warning: increasing
length
may overwrite bits in final word up to the next word boundary. i.e. D dynamic array extension semantics are not followed. - const pure nothrow @nogc bool
opIndex
(size_ti
); - Gets the
i
'th bit in the BitArray. - pure nothrow @nogc bool
opIndexAssign
(boolb
, size_ti
); - Sets the
i
'th bit in the BitArray. - const pure nothrow @property BitArray
dup
(); - Duplicates the BitArray and its contents.
- int
opApply
(scope int delegate(ref bool)dg
);
const intopApply
(scope int delegate(bool)dg
);
intopApply
(scope int delegate(size_t, ref bool)dg
);
const intopApply
(scope int delegate(size_t, bool)dg
); - Support for foreach loops for BitArray.
- pure nothrow @nogc @property BitArray
reverse
(); - Reverses the bits of the BitArray.
- pure nothrow @nogc @property BitArray
sort
(); - Sorts the BitArray's elements.
- const pure nothrow @nogc bool
opEquals
(ref const BitArraya2
); - Support for operators == and != for BitArray.
- const pure nothrow @nogc int
opCmp
(BitArraya2
); - Supports comparison operators for BitArray.
- const pure nothrow @nogc size_t
toHash
(); - Support for hashing for BitArray.
- pure nothrow @system this(bool[]
ba
); - Set this BitArray to the contents of
ba
. - pure nothrow this(void[]
v
, size_tnumbits
); - Map the BitArray onto
v
, withnumbits
being the number of bits in the array. Does not copy the data.v
.length must be a multiple of size_t.sizeof. If there are unmapped bits in the final mapped word then these will be set to 0.This is the inverse of opCast. - pure nothrow @nogc void[]
opCast
(T : void[])(); - Convert to void[].
- pure nothrow @nogc size_t[]
opCast
(T : size_t[])(); - Convert to size_t[].
- const pure nothrow BitArray
opCom
(); - Support for unary operator ~ for BitArray.
- const pure nothrow BitArray
opBinary
(string op)(const BitArraye2
)
if (op == "-" || op == "&" || op == "|" || op == "^"); - Support for binary bitwise operators for BitArray.
- pure nothrow @nogc BitArray
opOpAssign
(string op)(const BitArraye2
)
if (op == "-" || op == "&" || op == "|" || op == "^"); - Support for operator op= for BitArray.
- pure nothrow BitArray
opCatAssign
(boolb
);
pure nothrow BitArrayopCatAssign
(BitArrayb
); - Support for operator ~= for BitArray. Warning: This will overwrite a bit in the final word of the current underlying data regardless of whether it is shared between BitArray objects. i.e. D dynamic array concatenation semantics are not followed
- const pure nothrow BitArray
opCat
(boolb
);
const pure nothrow BitArrayopCat_r
(boolb
);
const pure nothrow BitArrayopCat
(BitArrayb
); - Support for binary operator ~ for BitArray.
- pure nothrow @nogc void
opOpAssign
(string op)(size_tnbits
)
if (op == "<<"); - Operator <<= support.Shifts all the bits in the array to the left by the given number of bits. The leftmost bits are dropped, and 0's are appended to the end to fill up the vacant bits. Warning: unused bits in the final word up to the next word boundary may be overwritten by this operation. It does not attempt to preserve bits past the end of the array.
- pure nothrow @nogc void
opOpAssign
(string op)(size_tnbits
)
if (op == ">>"); - Operator >>= support.Shifts all the bits in the array to the right by the given number of bits. The rightmost bits are dropped, and 0's are inserted at the back to fill up the vacant bits. Warning: unused bits in the final word up to the next word boundary may be overwritten by this operation. It does not attempt to preserve bits past the end of the array.
- const void
toString
(scope void delegate(const(char)[])sink
, FormatSpec!charfmt
); - Return a string representation of this BitArray.Two format specifiers are supported:
- %s which prints the bits as an array, and
- %b which prints the bits as 8-bit byte packets
separated with an underscore.Examples:import std.format : format; debug(bitarray) printf("BitArray.toString unittest\n"); auto b = BitArray([0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1]); auto s1 = format("%s", b); assert(s1 == "[0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1]"); auto s2 = format("%b", b); assert(s2 == "00001111_00001111");
- const nothrow @property auto
bitsSet
(); - Return a lazy range of the indices of set bits.Examples:
import std.algorithm.comparison : equal; auto b1 = BitArray([0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1]); assert(b1.bitsSet.equal([4, 5, 6, 7, 12, 13, 14, 15])); BitArray b2; b2.length = 1000; b2[333] = true; b2[666] = true; b2[999] = true; assert(b2.bitsSet.equal([333, 666, 999]));
- pure nothrow @nogc @safe T
swapEndian
(T)(Tval
)
if (isIntegral!T || isSomeChar!T || isBoolean!T); - Swaps the endianness of the given integral value or character.
- pure nothrow @nogc @safe auto
nativeToBigEndian
(T)(Tval
)
if (canSwapEndianness!T); - Converts the given value from the native endianness to big endian and returns it as a ubyte[n] where n is the size of the given type.Returning a ubyte[n] helps prevent accidentally using a swapped value as a regular one (and in the case of floating point values, it's necessary, because the FPU will mess up any swapped floating point values. So, you can't actually have swapped floating point values as floating point values). real is not supported, because its size is implementation-dependent and therefore could vary from machine to machine (which could make it unusable if you tried to transfer it to another machine).Examples:
int i = 12345; ubyte[4] swappedI = nativeToBigEndian(i); assert(i == bigEndianToNative!int(swappedI)); double d = 123.45; ubyte[8] swappedD = nativeToBigEndian(d); assert(d == bigEndianToNative!double(swappedD));
- pure nothrow @nogc @safe T
bigEndianToNative
(T, size_t n)(ubyte[n]val
)
if (canSwapEndianness!T && n == T.sizeof); - Converts the given value from big endian to the native endianness and returns it. The value is given as a ubyte[n] where n is the size of the target type. You must give the target type as a template argument, because there are multiple types with the same size and so the type of the argument is not enough to determine the return type.Taking a ubyte[n] helps prevent accidentally using a swapped value as a regular one (and in the case of floating point values, it's necessary, because the FPU will mess up any swapped floating point values. So, you can't actually have swapped floating point values as floating point values).Examples:
ushort i = 12345; ubyte[2] swappedI = nativeToBigEndian(i); assert(i == bigEndianToNative!ushort(swappedI)); dchar c = 'D'; ubyte[4] swappedC = nativeToBigEndian(c); assert(c == bigEndianToNative!dchar(swappedC));
- pure nothrow @nogc @safe auto
nativeToLittleEndian
(T)(Tval
)
if (canSwapEndianness!T); - Converts the given value from the native endianness to little endian and returns it as a ubyte[n] where n is the size of the given type.Returning a ubyte[n] helps prevent accidentally using a swapped value as a regular one (and in the case of floating point values, it's necessary, because the FPU will mess up any swapped floating point values. So, you can't actually have swapped floating point values as floating point values).Examples:
int i = 12345; ubyte[4] swappedI = nativeToLittleEndian(i); assert(i == littleEndianToNative!int(swappedI)); double d = 123.45; ubyte[8] swappedD = nativeToLittleEndian(d); assert(d == littleEndianToNative!double(swappedD));
- pure nothrow @nogc @safe T
littleEndianToNative
(T, size_t n)(ubyte[n]val
)
if (canSwapEndianness!T && n == T.sizeof); - Converts the given value from little endian to the native endianness and returns it. The value is given as a ubyte[n] where n is the size of the target type. You must give the target type as a template argument, because there are multiple types with the same size and so the type of the argument is not enough to determine the return type.Taking a ubyte[n] helps prevent accidentally using a swapped value as a regular one (and in the case of floating point values, it's necessary, because the FPU will mess up any swapped floating point values. So, you can't actually have swapped floating point values as floating point values). real is not supported, because its size is implementation-dependent and therefore could vary from machine to machine (which could make it unusable if you tried to transfer it to another machine).Examples:
ushort i = 12345; ubyte[2] swappedI = nativeToLittleEndian(i); assert(i == littleEndianToNative!ushort(swappedI)); dchar c = 'D'; ubyte[4] swappedC = nativeToLittleEndian(c); assert(c == littleEndianToNative!dchar(swappedC));
- T
peek
(T, Endian endianness = Endian.bigEndian, R)(Rrange
)
if (canSwapEndianness!T && isForwardRange!R && is(ElementType!R : const(ubyte)));
Tpeek
(T, Endian endianness = Endian.bigEndian, R)(Rrange
, size_tindex
)
if (canSwapEndianness!T && isForwardRange!R && hasSlicing!R && is(ElementType!R : const(ubyte)));
Tpeek
(T, Endian endianness = Endian.bigEndian, R)(Rrange
, size_t*index
)
if (canSwapEndianness!T && isForwardRange!R && hasSlicing!R && is(ElementType!R : const(ubyte))); - Takes a
range
of ubytes and converts the first T.sizeof bytes to T. The value returned is converted from the given endianness to the native endianness. Therange
is not consumed.Parameters:T The integral type to convert the first T.sizeof bytes to. endianness The endianness that the bytes are assumed to be in. R range
The range
to read from.size_t index
The index
to start reading from (instead of starting at the front). Ifindex
is a pointer, then it is updated to theindex
after the bytes read. The overloads withindex
are only available if hasSlicing!R istrue
.Examples:ubyte[] buffer = [1, 5, 22, 9, 44, 255, 8]; assert(buffer.peek!uint() == 17110537); assert(buffer.peek!ushort() == 261); assert(buffer.peek!ubyte() == 1); assert(buffer.peek!uint(2) == 369700095); assert(buffer.peek!ushort(2) == 5641); assert(buffer.peek!ubyte(2) == 22); size_t index = 0; assert(buffer.peek!ushort(&index) == 261); assert(index == 2); assert(buffer.peek!uint(&index) == 369700095); assert(index == 6); assert(buffer.peek!ubyte(&index) == 8); assert(index == 7);
- T
read
(T, Endian endianness = Endian.bigEndian, R)(ref Rrange
)
if (canSwapEndianness!T && isInputRange!R && is(ElementType!R : const(ubyte))); - Takes a
range
of ubytes and converts the first T.sizeof bytes to T. The value returned is converted from the given endianness to the native endianness. The T.sizeof bytes which areread
are consumed from therange
.Parameters:T The integral type to convert the first T.sizeof bytes to. endianness The endianness that the bytes are assumed to be in. R range
The range
toread
from.Examples:import std.range.primitives : empty; ubyte[] buffer = [1, 5, 22, 9, 44, 255, 8]; assert(buffer.length == 7); assert(buffer.read!ushort() == 261); assert(buffer.length == 5); assert(buffer.read!uint() == 369700095); assert(buffer.length == 1); assert(buffer.read!ubyte() == 8); assert(buffer.empty);
- void
write
(T, Endian endianness = Endian.bigEndian, R)(Rrange
, Tvalue
, size_tindex
)
if (canSwapEndianness!T && isForwardRange!R && hasSlicing!R && is(ElementType!R : ubyte));
voidwrite
(T, Endian endianness = Endian.bigEndian, R)(Rrange
, Tvalue
, size_t*index
)
if (canSwapEndianness!T && isForwardRange!R && hasSlicing!R && is(ElementType!R : ubyte)); - Takes an integral
value
, converts it to the given endianness, and writes it to the givenrange
of ubytes as a sequence of T.sizeof ubytes starting atindex
. hasSlicing!R must betrue
.Parameters:T The integral type to convert the first T.sizeof bytes to. endianness The endianness to write the bytes in. R range
The range
to write to.T value
The value
to write.size_t index
The index
to start writing to. Ifindex
is a pointer, then it is updated to theindex
after the bytes read.Examples:{ ubyte[] buffer = [0, 0, 0, 0, 0, 0, 0, 0]; buffer.write!uint(29110231u, 0); assert(buffer == [1, 188, 47, 215, 0, 0, 0, 0]); buffer.write!ushort(927, 0); assert(buffer == [3, 159, 47, 215, 0, 0, 0, 0]); buffer.write!ubyte(42, 0); assert(buffer == [42, 159, 47, 215, 0, 0, 0, 0]); } { ubyte[] buffer = [0, 0, 0, 0, 0, 0, 0, 0, 0]; buffer.write!uint(142700095u, 2); assert(buffer == [0, 0, 8, 129, 110, 63, 0, 0, 0]); buffer.write!ushort(19839, 2); assert(buffer == [0, 0, 77, 127, 110, 63, 0, 0, 0]); buffer.write!ubyte(132, 2); assert(buffer == [0, 0, 132, 127, 110, 63, 0, 0, 0]); } { ubyte[] buffer = [0, 0, 0, 0, 0, 0, 0, 0]; size_t index = 0; buffer.write!ushort(261, &index); assert(buffer == [1, 5, 0, 0, 0, 0, 0, 0]); assert(index == 2); buffer.write!uint(369700095u, &index); assert(buffer == [1, 5, 22, 9, 44, 255, 0, 0]); assert(index == 6); buffer.write!ubyte(8, &index); assert(buffer == [1, 5, 22, 9, 44, 255, 8, 0]); assert(index == 7); }
- void
append
(T, Endian endianness = Endian.bigEndian, R)(Rrange
, Tvalue
)
if (canSwapEndianness!T && isOutputRange!(R, ubyte)); - Takes an integral
value
, converts it to the given endianness, and appends it to the givenrange
of ubytes (using put) as a sequence of T.sizeof ubytes starting at index. hasSlicing!R must betrue
.Parameters:T The integral type to convert the first T.sizeof bytes to. endianness The endianness to write the bytes in. R range
The range
to append to.T value
The value
to append.Examples:import std.array; auto buffer = appender!(const ubyte[])(); buffer.append!ushort(261); assert(buffer.data == [1, 5]); buffer.append!uint(369700095u); assert(buffer.data == [1, 5, 22, 9, 44, 255]); buffer.append!ubyte(8); assert(buffer.data == [1, 5, 22, 9, 44, 255, 8]);
- pure nothrow @nogc auto
bitsSet
(T)(Tvalue
)
if (isIntegral!T); - Range that iterates the indices of the set bits in
value
. Index 0 corresponds to the least significant bit. For signed integers, the highest index corresponds to the sign bit.Examples:import std.algorithm.comparison : equal; import std.range : iota; assert(bitsSet(1).equal([0])); assert(bitsSet(5).equal([0, 2])); assert(bitsSet(-1).equal(iota(32))); assert(bitsSet(int.min).equal([31]));
Copyright Digital Mars 2007 - 2011.
| Page generated by
Ddoc on (no date time)