std.algorithm.iteration
Function Name | Description |
---|---|
cache | Eagerly evaluates and caches another range's front. |
cacheBidirectional | As above, but also provides back and popBack. |
chunkBy | chunkBy!((a,b) => a[1] == b[1])([[1, 1], [1, 2], [2, 2], [2, 1]]) returns a range containing 3 subranges: the first with just [1, 1]; the second with the elements [1, 2] and [2, 2]; and the third with just [2, 1]. |
cumulativeFold | cumulativeFold!((a, b) => a + b)([1, 2, 3, 4]) returns a lazily-evaluated range containing the successive reduced values 1, 3, 6, 10. |
each | each!writeln([1, 2, 3]) eagerly prints the numbers 1, 2 and 3 on their own lines. |
filter | filter!(a => a > 0)([1, -1, 2, 0, -3]) iterates over elements 1 and 2. |
filterBidirectional | Similar to filter, but also provides back and popBack at a small increase in cost. |
fold | fold!((a, b) => a + b)([1, 2, 3, 4]) returns 10. |
group | group([5, 2, 2, 3, 3]) returns a range containing the tuples tuple(5, 1), tuple(2, 2), and tuple(3, 2). |
joiner | joiner(["hello", "world!"], "; ") returns a range that iterates over the characters "hello; world!". No new string is created - the existing inputs are iterated. |
map | map!(a => a * 2)([1, 2, 3]) lazily returns a range with the numbers 2, 4, 6. |
mean | Colloquially known as the average, mean([1, 2, 3]) returns 2. |
permutations | Lazily computes all permutations using Heap's algorithm. |
reduce | reduce!((a, b) => a + b)([1, 2, 3, 4]) returns 10. This is the old implementation of fold. |
splitWhen | Lazily splits a range by comparing adjacent elements. |
splitter | Lazily splits a range by a separator. |
substitute | [1, 2].substitute(1, 0.1) returns [0.1, 2]. |
sum | Same as fold, but specialized for accurate summation. |
uniq | Iterates over the unique elements in a range, which is assumed sorted. |
Source std/algorithm/iteration.d
- auto
cache
(Range)(Rangerange
)
if (isInputRange!Range);
autocacheBidirectional
(Range)(Rangerange
)
if (isBidirectionalRange!Range); cache
eagerly evaluates front ofrange
on each construction or call to popFront, to store the result in a cache. The result is then directly returned when front is called, rather than re-evaluated.This can be a useful function to place in a chain, after functions that have expensive evaluation, as a lazy alternative to std.array.array. In particular, it can be placed after a call to map, or before a call std.range.filter or std.range.teecache
may provide bidirectional range iteration if needed, but since this comes at an increased cost, it must be explicitly requested via the call tocacheBidirectional
. Furthermore, a bidirectional cache will evaluate the "center" element twice, when there is only one element left in the range.cache
does not provide random access primitives, ascache
would be unable to cache the random accesses. If Range provides slicing primitives, thencache
will provide the same slicing primitives, but hasSlicing!Cache will not yield true (as the std.range.primitives.hasSlicing trait also checks for random access).Parameters:Range range
an input range Returns:An input range with the cached values of rangeExamples:import std.algorithm.comparison : equal; import std.range, std.stdio; import std.typecons : tuple; ulong counter = 0; double fun(int x) { ++counter; // http://en.wikipedia.org/wiki/Quartic_function return ( (x + 4.0) * (x + 1.0) * (x - 1.0) * (x - 3.0) ) / 14.0 + 0.5; } // Without cache, with array (greedy) auto result1 = iota(-4, 5).map!(a =>tuple(a, fun(a)))() .filter!(a => a[1] < 0)() .map!(a => a[0])() .array(); // the values of x that have a negative y are: assert(equal(result1, [-3, -2, 2])); // Check how many times fun was evaluated. // As many times as the number of items in both source and result. writeln(counter); // iota(-4, 5).length + result1.length counter = 0; // Without array, with cache (lazy) auto result2 = iota(-4, 5).map!(a =>tuple(a, fun(a)))() .cache() .filter!(a => a[1] < 0)() .map!(a => a[0])(); // the values of x that have a negative y are: assert(equal(result2, [-3, -2, 2])); // Check how many times fun was evaluated. // Only as many times as the number of items in source. writeln(counter); // iota(-4, 5).length
Examples:Tip:cache
is eager when evaluating elements. If calling front on the underlying range has a side effect, it will be observable before calling front on the actual cached range. Furthermore, care should be taken composingcache
with std.range.take. By placing take beforecache
, thencache
will be "aware" of when the range ends, and correctly stop caching elements when needed. If calling front has no side effect though, placing take aftercache
may yield a faster range. Either way, the resulting ranges will be equivalent, but maybe not at the same cost or side effects.import std.algorithm.comparison : equal; import std.range; int i = 0; auto r = iota(0, 4).tee!((a){i = a;}, No.pipeOnPop); auto r1 = r.take(3).cache(); auto r2 = r.cache().take(3); assert(equal(r1, [0, 1, 2])); assert(i == 2); //The last "seen" element was 2. The data in cache has been cleared. assert(equal(r2, [0, 1, 2])); assert(i == 3); //cache has accessed 3. It is still stored internally by cache.
- template
map
(fun...) if (fun.length >= 1) - Implements the homonym function (also known as transform) present in many languages of functional flavor. The call
map
!(fun)(range) returns a range of which elements are obtained by applying fun(a) left to right for all elements a in range. The original ranges are not changed. Evaluation is done lazily.Parameters:fun one or more transformation functions See Also:Examples:import std.algorithm.comparison : equal; import std.range : chain, only; auto squares = chain(only(1, 2, 3, 4), only(5, 6)).map!(a => a * a); assert(equal(squares, only(1, 4, 9, 16, 25, 36)));
Examples:Multiple functions can be passed tomap
. In that case, the element type ofmap
is a tuple containing one element for each function.auto sums = [2, 4, 6, 8]; auto products = [1, 4, 9, 16]; size_t i = 0; foreach (result; [ 1, 2, 3, 4 ].map!("a + a", "a * a")) { writeln(result[0]); // sums[i] writeln(result[1]); // products[i] ++i; }
Examples:You may aliasmap
with some function(s) to a symbol and use it separately:import std.algorithm.comparison : equal; import std.conv : to; alias stringize = map!(to!string); assert(equal(stringize([ 1, 2, 3, 4 ]), [ "1", "2", "3", "4" ]));
- auto
map
(Range)(Ranger
)
if (isInputRange!(Unqual!Range)); - Parameters:
Range r
an input range Returns:A range with each fun applied to all the elements. If there is more than one fun, the element type will be Tuple containing one element for each fun.
- template
each
(alias fun = "a") - Eagerly iterates over r and calls fun with each element.If no function to call is specified,
each
defaults to doing nothing but consuming the entire range. r.front will be evaluated, but that can be avoided by specifying a lambda with a lazy parameter.each
also supports opApply-based types, so it works with e.g. std.parallelism.parallel. Normally the entire range is iterated. If partial iteration (early stopping) is desired, fun needs to return a value of type std.typecons.Flag!"each
" (Yes.each
to continue iteration, or No.each
to stop iteration).Parameters:fun function to apply to each element of the range Range r range or iterable over which each
iteratesReturns:Yes.each
if the entire range was iterated, No.each
in case of early stopping.See Also:Examples:import std.range : iota; import std.typecons : No; int[] arr; iota(5).each!(n => arr ~= n); writeln(arr); // [0, 1, 2, 3, 4] // stop iterating early iota(5).each!((n) { arr ~= n; return No.each; }); writeln(arr); // [0, 1, 2, 3, 4, 0] // If the range supports it, the value can be mutated in place arr.each!((ref n) => n++); writeln(arr); // [1, 2, 3, 4, 5, 1] arr.each!"a++"; writeln(arr); // [2, 3, 4, 5, 6, 2] auto m = arr.map!(n => n); // by-ref lambdas are not allowed for non-ref ranges static assert(!__traits(compiles, m.each!((ref n) => n++))); // The default predicate consumes the range (&m).each(); assert(m.empty);
Examples:each
can pass an index variable for iterable objects which support thisauto arr = new size_t[4]; arr.each!"a=i"(); writeln(arr); // [0, 1, 2, 3] arr.each!((i, ref e) => e = i * 2); writeln(arr); // [0, 2, 4, 6]
Examples:opApply iterators work as wellstatic class S { int x; int opApply(scope int delegate(ref int _x) dg) { return dg(x); } } auto s = new S; s.each!"a++"; writeln(s.x); // 1
- Flag!"
each
"each
(Range)(Ranger
)
if (!isForeachIterable!Range && (isRangeIterable!Range || __traits(compiles, typeof(r
.front).length)));
Flag!"each
"each
(Iterable)(auto ref Iterabler
)
if (isForeachIterable!Iterable || __traits(compiles, Parameters!(Parameters!(r
.opApply)))); - Parameters:
Range r
range or iterable over which each iterates
- template
filter
(alias predicate) if (is(typeof(unaryFun!predicate))) filter
!(predicate)(range) returns a new range containing only elements x in range for which predicate(x) returns true.The predicate is passed to std.functional.unaryFun, and can be either a string, or any callable that can be executed via pred(element).Parameters:predicate Function to apply to each element of range Returns:An input range that contains the filtered elements. If range is at least a forward range, the return value offilter
will also be a forward range.Examples:import std.algorithm.comparison : equal; import std.math.operations : isClose; import std.range; int[] arr = [ 1, 2, 3, 4, 5 ]; // Filter below 3 auto small = filter!(a => a < 3)(arr); assert(equal(small, [ 1, 2 ])); // Filter again, but with Uniform Function Call Syntax (UFCS) auto sum = arr.filter!(a => a < 3); assert(equal(sum, [ 1, 2 ])); // In combination with chain() to span multiple ranges int[] a = [ 3, -2, 400 ]; int[] b = [ 100, -101, 102 ]; auto r = chain(a, b).filter!(a => a > 0); assert(equal(r, [ 3, 400, 100, 102 ])); // Mixing convertible types is fair game, too double[] c = [ 2.5, 3.0 ]; auto r1 = chain(c, a, b).filter!(a => cast(int) a != a); assert(isClose(r1, [ 2.5 ]));
- auto
filter
(Range)(Rangerange
)
if (isInputRange!(Unqual!Range)); - Parameters:
Range range
An input range of elements Returns:A range containing only elements x inrange
for which predicate(x) returns true.
- template
filterBidirectional
(alias pred) - Similar to filter, except it defines a bidirectional range. There is a speed disadvantage - the constructor spends time finding the last element in the range that satisfies the filtering condition (in addition to finding the first one). The advantage is that the filtered range can be spanned from both directions. Also, std.range.retro can be applied against the filtered range.The predicate is passed to std.functional.unaryFun, and can either accept a string, or any callable that can be executed via pred(element).Parameters:
pred Function to apply to each element of range Examples:import std.algorithm.comparison : equal; import std.range; int[] arr = [ 1, 2, 3, 4, 5 ]; auto small = filterBidirectional!("a < 3")(arr); static assert(isBidirectionalRange!(typeof(small))); writeln(small.back); // 2 assert(equal(small, [ 1, 2 ])); assert(equal(retro(small), [ 2, 1 ])); // In combination with chain() to span multiple ranges int[] a = [ 3, -2, 400 ]; int[] b = [ 100, -101, 102 ]; auto r = filterBidirectional!("a > 0")(chain(a, b)); writeln(r.back); // 102
- auto
filterBidirectional
(Range)(Ranger
)
if (isBidirectionalRange!(Unqual!Range)); - Parameters:
Range r
Bidirectional range of elements Returns:A range containing only the elements inr
for which pred returns true.
- Group!(pred, Range)
group
(alias pred = "a == b", Range)(Ranger
);
structGroup
(alias pred, R) if (isInputRange!R); - Groups consecutively equivalent elements into a single tuple of the element and the number of its repetitions.Similarly to uniq,
group
produces a range that iterates over unique consecutive elements of the given range. Each element of this range is a tuple of the element and the number of times it is repeated in the original range. Equivalence of elements is assessed by using the predicate pred, which defaults to "a == b". The predicate is passed to std.functional.binaryFun, and can either accept a string, or any callable that can be executed via pred(element, element).Parameters:pred Binary predicate for determining equivalence of two elements. R The range type Range r
The input range to iterate over. Returns:A range of elements of type Tuple!(ElementType!R, uint), representing each consecutively unique element and its respective number of occurrences in that run. This will be an input range if R is an input range, and a forward range in all other cases.See Also:chunkBy, which chunks an input range into subranges of equivalent adjacent elements.Examples:import std.algorithm.comparison : equal; import std.typecons : tuple, Tuple; int[] arr = [ 1, 2, 2, 2, 2, 3, 4, 4, 4, 5 ]; assert(equal(group(arr), [ tuple(1, 1u), tuple(2, 4u), tuple(3, 1u), tuple(4, 3u), tuple(5, 1u) ][]));
Examples:Using group, an associative array can be easily generated with the count of each unique element in the range.import std.algorithm.sorting : sort; import std.array : assocArray; uint[string] result; auto range = ["a", "b", "a", "c", "b", "c", "c", "d", "e"]; result = range.sort!((a, b) => a < b) .group .assocArray; writeln(result); // ["a":2U, "b":2U, "c":3U, "d":1U, "e":1U]
- auto
chunkBy
(alias pred, Range)(Ranger
)
if (isInputRange!Range); - Chunks an input range into subranges of equivalent adjacent elements. In other languages this is often called partitionBy, groupBy or sliceWhen.Equivalence is defined by the predicate pred, which can be either binary, which is passed to std.functional.binaryFun, or unary, which is passed to std.functional.unaryFun. In the binary form, two range elements a and b are considered equivalent if pred(a,b) is true. In unary form, two elements are considered equivalent if pred(a) == pred(b) is true. This predicate must be an equivalence relation, that is, it must be reflexive (pred(x,x) is always true), symmetric (pred(x,y) == pred(y,x)), and transitive (pred(x,y) && pred(y,z) implies pred(x,z)). If this is not the case, the range returned by chunkBy may assert at runtime or behave erratically. Use splitWhen if you want to chunk by a predicate that is not an equivalence relation.Parameters:
pred Predicate for determining equivalence. Range r
An input range to be chunked. Returns:With a binary predicate, a range of ranges is returned in which all elements in a given subrange are equivalent under the given predicate. With a unary predicate, a range of tuples is returned, with the tuple consisting of the result of the unary predicate for each subrange, and the subrange itself. Copying the range currently has reference semantics, but this may change in the future.Notes Equivalent elements separated by an intervening non-equivalent element will appear in separate subranges; this function only considers adjacent equivalence. Elements in the subranges will always appear in the same order they appear in the original range.
See Also:group, which collapses adjacent equivalent elements into a single element.Examples:Showing usage with binary predicate:import std.algorithm.comparison : equal; // Grouping by particular attribute of each element: auto data = [ [1, 1], [1, 2], [2, 2], [2, 3] ]; auto r1 = data.chunkBy!((a,b) => a[0] == b[0]); assert(r1.equal!equal([ [[1, 1], [1, 2]], [[2, 2], [2, 3]] ])); auto r2 = data.chunkBy!((a,b) => a[1] == b[1]); assert(r2.equal!equal([ [[1, 1]], [[1, 2], [2, 2]], [[2, 3]] ]));
Examples:Showing usage with unary predicate:import std.algorithm.comparison : equal; import std.range.primitives; import std.typecons : tuple; // Grouping by particular attribute of each element: auto range = [ [1, 1], [1, 1], [1, 2], [2, 2], [2, 3], [2, 3], [3, 3] ]; auto byX = chunkBy!(a => a[0])(range); auto expected1 = [ tuple(1, [[1, 1], [1, 1], [1, 2]]), tuple(2, [[2, 2], [2, 3], [2, 3]]), tuple(3, [[3, 3]]) ]; foreach (e; byX) { assert(!expected1.empty); writeln(e[0]); // expected1.front[0] assert(e[1].equal(expected1.front[1])); expected1.popFront(); } auto byY = chunkBy!(a => a[1])(range); auto expected2 = [ tuple(1, [[1, 1], [1, 1]]), tuple(2, [[1, 2], [2, 2]]), tuple(3, [[2, 3], [2, 3], [3, 3]]) ]; foreach (e; byY) { assert(!expected2.empty); writeln(e[0]); // expected2.front[0] assert(e[1].equal(expected2.front[1])); expected2.popFront(); }
- auto
splitWhen
(alias pred, Range)(Ranger
)
if (isForwardRange!Range); - Splits a forward range into subranges in places determined by a binary predicate.When iterating, one element of
r
is compared with pred to the next element. If pred return true, a new subrange is started for the next element. Otherwise, they are part of the same subrange. If the elements are compared with an inequality (!=) operator, consider chunkBy instead, as it's likely faster to execute.Parameters:pred Predicate for determining where to split. The earlier element in the source range is always given as the first argument. Range r
A forward range to be split. Returns:a range of subranges ofr
, split such that within a given subrange, calling pred with any pair of adjacent elements as arguments returns false. Copying the range currently has reference semantics, but this may change in the future.See Also:splitter, which uses elements as splitters instead of element-to-element relations.Examples:import std.algorithm.comparison : equal; import std.range : dropExactly; auto source = [4, 3, 2, 11, 0, -3, -3, 5, 3, 0]; auto result1 = source.splitWhen!((a,b) => a <= b); assert(result1.save.equal!equal([ [4, 3, 2], [11, 0, -3], [-3], [5, 3, 0] ])); //splitWhen, like chunkBy, is currently a reference range (this may change //in future). Remember to call `save` when appropriate. auto result2 = result1.dropExactly(2); assert(result1.save.equal!equal([ [-3], [5, 3, 0] ]));
- auto
joiner
(RoR, Separator)(RoRr
, Separatorsep
)
if (isInputRange!RoR && isInputRange!(ElementType!RoR) && isForwardRange!Separator && is(ElementType!Separator : ElementType!(ElementType!RoR)));
autojoiner
(RoR)(RoRr
)
if (isInputRange!RoR && isInputRange!(ElementType!RoR)); - Lazily joins a range of ranges with a separator. The separator itself is a range. If a separator is not provided, then the ranges are joined directly without anything in between them (often called flatten in other languages).Parameters:
RoR r
An input range of input ranges to be joined. Separator sep
A forward range of element(s) to serve as separators in the joined range. Returns:A range of elements in the joined range. This will be a bidirectional range if both outer and inner ranges of RoR are at least bidirectional ranges. Else if both outer and inner ranges of RoR are forward ranges, the returned range will be likewise. Otherwise it will be only an input range. The range bidirectionality is propagated if no separator is specified.See Also:std.range.chain, which chains a sequence of ranges with compatible elements into a single range.Note When both outer and inner ranges of RoR are bidirectional and the joiner is iterated from the back to the front, the separator will still be consumed from front to back, even if it is a bidirectional range too.
Examples:import std.algorithm.comparison : equal; import std.conv : text; assert(["abc", "def"].joiner.equal("abcdef")); assert(["Mary", "has", "a", "little", "lamb"] .joiner("...") .equal("Mary...has...a...little...lamb")); assert(["", "abc"].joiner("xyz").equal("xyzabc")); assert([""].joiner("xyz").equal("")); assert(["", ""].joiner("xyz").equal("xyz"));
Examples:import std.algorithm.comparison : equal; import std.range : repeat; assert([""].joiner.equal("")); assert(["", ""].joiner.equal("")); assert(["", "abc"].joiner.equal("abc")); assert(["abc", ""].joiner.equal("abc")); assert(["abc", "def"].joiner.equal("abcdef")); assert(["Mary", "has", "a", "little", "lamb"].joiner.equal("Maryhasalittlelamb")); assert("abc".repeat(3).joiner.equal("abcabcabc"));
Examples:joiner allows in-place mutation!import std.algorithm.comparison : equal; auto a = [ [1, 2, 3], [42, 43] ]; auto j = joiner(a); j.front = 44; writeln(a); // [[44, 2, 3], [42, 43]] assert(equal(j, [44, 2, 3, 42, 43]));
Examples:insert characters fully lazily into a stringimport std.algorithm.comparison : equal; import std.range : chain, cycle, iota, only, retro, take, zip; import std.format : format; static immutable number = "12345678"; static immutable delimiter = ","; auto formatted = number.retro .zip(3.iota.cycle.take(number.length)) .map!(z => chain(z[0].only, z[1] == 2 ? delimiter : null)) .joiner .retro; static immutable expected = "12,345,678"; assert(formatted.equal(expected));
Examples:joiner can be bidirectionalimport std.algorithm.comparison : equal; import std.range : retro; auto a = [[1, 2, 3], [4, 5]]; auto j = a.joiner; j.back = 44; writeln(a); // [[1, 2, 3], [4, 44]] assert(equal(j.retro, [44, 4, 3, 2, 1]));
- template
reduce
(fun...) if (fun.length >= 1) - Implements the homonym function (also known as accumulate, compress, inject, or foldl) present in various programming languages of functional flavor. There is also fold which does the same thing but with the opposite parameter order. The call
reduce
!(fun)(seed, range) first assigns seed to an internal variable result, also called the accumulator. Then, for each element x in range, result = fun(result, x) gets evaluated. Finally, result is returned. The one-argument versionreduce
!(fun)(range) works similarly, but it uses the first element of the range as the seed (the range must be non-empty).Returns:the accumulated resultParameters:fun one or more functions See Also:Fold (higher-order function) fold is functionally equivalent to reduce with the argument order reversed, and without the need to use tuple for multiple seeds. This makes it easier to use in UFCS chains. sum is similar toreduce
!((a, b) => a + b) that offers pairwise summing of floating point numbers.Examples:Many aggregate range operations turn out to be solved withreduce
quickly and easily. The example below illustratesreduce
's remarkable power and flexibility.import std.algorithm.comparison : max, min; import std.math.operations : isClose; import std.range; int[] arr = [ 1, 2, 3, 4, 5 ]; // Sum all elements auto sum = reduce!((a,b) => a + b)(0, arr); writeln(sum); // 15 // Sum again, using a string predicate with "a" and "b" sum = reduce!"a + b"(0, arr); writeln(sum); // 15 // Compute the maximum of all elements auto largest = reduce!(max)(arr); writeln(largest); // 5 // Max again, but with Uniform Function Call Syntax (UFCS) largest = arr.reduce!(max); writeln(largest); // 5 // Compute the number of odd elements auto odds = reduce!((a,b) => a + (b & 1))(0, arr); writeln(odds); // 3 // Compute the sum of squares auto ssquares = reduce!((a,b) => a + b * b)(0, arr); writeln(ssquares); // 55 // Chain multiple ranges into seed int[] a = [ 3, 4 ]; int[] b = [ 100 ]; auto r = reduce!("a + b")(chain(a, b)); writeln(r); // 107 // Mixing convertible types is fair game, too double[] c = [ 2.5, 3.0 ]; auto r1 = reduce!("a + b")(chain(a, b, c)); assert(isClose(r1, 112.5)); // To minimize nesting of parentheses, Uniform Function Call Syntax can be used auto r2 = chain(a, b, c).reduce!("a + b"); assert(isClose(r2, 112.5));
Examples:Sometimes it is very useful to compute multiple aggregates in one pass. One advantage is that the computation is faster because the looping overhead is shared. That's whyreduce
accepts multiple functions. If two or more functions are passed,reduce
returns a std.typecons.Tuple object with one member per passed-in function. The number of seeds must be correspondingly increased.import std.algorithm.comparison : max, min; import std.math.operations : isClose; import std.math.algebraic : sqrt; import std.typecons : tuple, Tuple; double[] a = [ 3.0, 4, 7, 11, 3, 2, 5 ]; // Compute minimum and maximum in one pass auto r = reduce!(min, max)(a); // The type of r is Tuple!(int, int) assert(isClose(r[0], 2)); // minimum assert(isClose(r[1], 11)); // maximum // Compute sum and sum of squares in one pass r = reduce!("a + b", "a + b * b")(tuple(0.0, 0.0), a); assert(isClose(r[0], 35)); // sum assert(isClose(r[1], 233)); // sum of squares // Compute average and standard deviation from the above auto avg = r[0] / a.length; writeln(avg); // 5 auto stdev = sqrt(r[1] / a.length - avg * avg); writeln(cast(int)stdev); // 2
- auto
reduce
(R)(Rr
)
if (isIterable!R); - No-seed version. The first element of
r
is used as the seed's value.For each function f in fun, the corresponding seed type S is Unqual!(typeof(f(e, e))), where e is an element ofr
: ElementType!R for ranges, and ForeachType!R otherwise. Once S has been determined, then S s = e; and s = f(s, e); must both be legal.Parameters:R r
an iterable value as defined by isIterable Returns:the final result of the accumulator applied to the iterableThrows:Exception ifr
is empty - auto
reduce
(S, R)(Sseed
, Rr
)
if (isIterable!R); - Seed version. The seed should be a single value if fun is a single function. If fun is multiple functions, then
seed
should be a std.typecons.Tuple, with one field per function in f.For convenience, if the seed is const, or has qualified fields, thenreduce
will operate on an unqualified copy. If this happens then the returned type will not perfectly match S. Use fold instead ofreduce
to use the seed version in a UFCS chain.Parameters:S seed
the initial value of the accumulator R r
an iterable value as defined by isIterable Returns:the final result of the accumulator applied to the iterable
- template
fold
(fun...) if (fun.length >= 1) - Implements the homonym function (also known as accumulate, compress, inject, or foldl) present in various programming languages of functional flavor. The call
fold
!(fun)(range, seed) first assigns seed to an internal variable result, also called the accumulator. Then, for each element x in range, result = fun(result, x) gets evaluated. Finally, result is returned. The one-argument versionfold
!(fun)(range) works similarly, but it uses the first element of the range as the seed (the range must be non-empty).Parameters:fun the predicate function(s) to apply to the elements See Also:Fold (higher-order function) sum is similar tofold
!((a, b) => a + b) that offers precise summing of floating point numbers. This is functionally equivalent to reduce with the argument order reversed, and without the need to use tuple for multiple seeds.Examples:immutable arr = [1, 2, 3, 4, 5]; // Sum all elements writeln(arr.fold!((a, b) => a + b)); // 15 // Sum all elements with explicit seed writeln(arr.fold!((a, b) => a + b)(6)); // 21 import std.algorithm.comparison : min, max; import std.typecons : tuple; // Compute minimum and maximum at the same time writeln(arr.fold!(min, max)); // tuple(1, 5) // Compute minimum and maximum at the same time with seeds writeln(arr.fold!(min, max)(0, 7)); // tuple(0, 7) // Can be used in a UFCS chain writeln(arr.map!(a => a + 1).fold!((a, b) => a + b)); // 20 // Return the last element of any range writeln(arr.fold!((a, b) => b)); // 5
- auto
fold
(R, S...)(Rr
, Sseed
); - Parameters:
R r
the input range to fold S seed
the initial value of the accumulator Returns:the accumulated result
- template
cumulativeFold
(fun...) if (fun.length >= 1) - Similar to fold, but returns a range containing the successive reduced values. The call
cumulativeFold
!(fun)(range, seed) first assigns seed to an internal variable result, also called the accumulator. The returned range contains the values result = fun(result, x) lazily evaluated for each element x in range. Finally, the last element has the same value as fold!(fun)(seed, range). The one-argument versioncumulativeFold
!(fun)(range) works similarly, but it returns the first element unchanged and uses it as seed for the next elements. This function is also known as partial_sum, accumulate, scan, Cumulative Sum.Parameters:fun one or more functions to use as fold operation Returns:The function returns a range containing the consecutive reduced values. If there is more than one fun, the element type will be std.typecons.Tuple containing one element for each fun.See Also:Note In functional programming languages this is typically called scan, scanl, scanLeft or reductions.
Examples:import std.algorithm.comparison : max, min; import std.array : array; import std.math.operations : isClose; import std.range : chain; int[] arr = [1, 2, 3, 4, 5]; // Partial sum of all elements auto sum = cumulativeFold!((a, b) => a + b)(arr, 0); writeln(sum.array); // [1, 3, 6, 10, 15] // Partial sum again, using a string predicate with "a" and "b" auto sum2 = cumulativeFold!"a + b"(arr, 0); writeln(sum2.array); // [1, 3, 6, 10, 15] // Compute the partial maximum of all elements auto largest = cumulativeFold!max(arr); writeln(largest.array); // [1, 2, 3, 4, 5] // Partial max again, but with Uniform Function Call Syntax (UFCS) largest = arr.cumulativeFold!max; writeln(largest.array); // [1, 2, 3, 4, 5] // Partial count of odd elements auto odds = arr.cumulativeFold!((a, b) => a + (b & 1))(0); writeln(odds.array); // [1, 1, 2, 2, 3] // Compute the partial sum of squares auto ssquares = arr.cumulativeFold!((a, b) => a + b * b)(0); writeln(ssquares.array); // [1, 5, 14, 30, 55] // Chain multiple ranges into seed int[] a = [3, 4]; int[] b = [100]; auto r = cumulativeFold!"a + b"(chain(a, b)); writeln(r.array); // [3, 7, 107] // Mixing convertible types is fair game, too double[] c = [2.5, 3.0]; auto r1 = cumulativeFold!"a + b"(chain(a, b, c)); assert(isClose(r1, [3, 7, 107, 109.5, 112.5])); // To minimize nesting of parentheses, Uniform Function Call Syntax can be used auto r2 = chain(a, b, c).cumulativeFold!"a + b"; assert(isClose(r2, [3, 7, 107, 109.5, 112.5]));
Examples:Sometimes it is very useful to compute multiple aggregates in one pass. One advantage is that the computation is faster because the looping overhead is shared. That's whycumulativeFold
accepts multiple functions. If two or more functions are passed,cumulativeFold
returns a std.typecons.Tuple object with one member per passed-in function. The number of seeds must be correspondingly increased.import std.algorithm.comparison : max, min; import std.algorithm.iteration : map; import std.math.operations : isClose; import std.typecons : tuple; double[] a = [3.0, 4, 7, 11, 3, 2, 5]; // Compute minimum and maximum in one pass auto r = a.cumulativeFold!(min, max); // The type of r is Tuple!(int, int) assert(isClose(r.map!"a[0]", [3, 3, 3, 3, 3, 2, 2])); // minimum assert(isClose(r.map!"a[1]", [3, 4, 7, 11, 11, 11, 11])); // maximum // Compute sum and sum of squares in one pass auto r2 = a.cumulativeFold!("a + b", "a + b * b")(tuple(0.0, 0.0)); assert(isClose(r2.map!"a[0]", [3, 7, 14, 25, 28, 30, 35])); // sum assert(isClose(r2.map!"a[1]", [9, 25, 74, 195, 204, 208, 233])); // sum of squares
- auto
cumulativeFold
(R)(Rrange
)
if (isInputRange!(Unqual!R)); - No-seed version. The first element of r is used as the seed's value. For each function f in fun, the corresponding seed type S is Unqual!(typeof(f(e, e))), where e is an element of r: ElementType!R. Once S has been determined, then S s = e; and s = f(s, e); must both be legal.Parameters:
R range
An input range Returns:a range containing the consecutive reduced values. - auto
cumulativeFold
(R, S)(Rrange
, Sseed
)
if (isInputRange!(Unqual!R)); - Seed version. The seed should be a single value if fun is a single function. If fun is multiple functions, then
seed
should be a std.typecons.Tuple, with one field per function in f. For convenience, if the seed is const, or has qualified fields, thencumulativeFold
will operate on an unqualified copy. If this happens then the returned type will not perfectly match S.Parameters:R range
An input range S seed
the initial value of the accumulator Returns:a range containing the consecutive reduced values.
- auto
splitter
(alias pred = "a == b", Flag!"keepSeparators" keepSeparators = No.keepSeparators, Range, Separator)(Ranger
, Separators
)
if (is(typeof(binaryFun!pred(r
.front,s
)) : bool) && (hasSlicing!Range && hasLength!Range || isNarrowString!Range));
autosplitter
(alias pred = "a == b", Flag!"keepSeparators" keepSeparators = No.keepSeparators, Range, Separator)(Ranger
, Separators
)
if (is(typeof(binaryFun!pred(r
.front,s
.front)) : bool) && (hasSlicing!Range || isNarrowString!Range) && isForwardRange!Separator && (hasLength!Separator || isNarrowString!Separator));
autosplitter
(alias isTerminator, Range)(Ranger
)
if (isForwardRange!Range && is(typeof(unaryFun!isTerminator(r
.front)))); - Lazily splits a range using an element or range as a separator. Separator ranges can be any narrow string type or sliceable range type.Two adjacent separators are considered to surround an empty element in the split range. Use filter!(a => !a.empty) on the result to compress empty elements. The predicate is passed to std.functional.binaryFun and accepts any callable function that can be executed via pred(element,
s
).Notes If splitting a string on whitespace and token compression is desired, consider using
If no separator is passed, the predicate isTerminator decides whether to accept an element ofsplitter
without specifying a separator.r
.Parameters:pred The predicate for comparing each element with the separator, defaulting to "a == b". Range r
The input range to be split. Must support slicing and .length or be a narrow string type. Separator s
The element (or range) to be treated as the separator between range segments to be split. isTerminator The predicate for deciding where to split the range when no separator is passed keepSeparators The flag for deciding if the separators are kept Constraints The predicate pred needs to accept an element of
r
and the separators
.Returns:An input range of the subranges of elements between separators. Ifr
is a forward range or bidirectional range, the returned range will be likewise. When a range is used a separator, bidirectionality isn't possible. If keepSeparators is equal to Yes.keepSeparators the output will also contain the separators. If an empty range is given, the result is an empty range. If a range with one separator is given, the result is a range with two empty elements.See Also:std.regex.splitter for a version that splits using a regular expression defined separator, std.array.split for a version that splits eagerly and splitWhen, which compares adjacent elements instead of element against separator.Examples:Basic splitting with characters and numbers.import std.algorithm.comparison : equal; assert("a|bc|def".splitter('|').equal([ "a", "bc", "def" ])); int[] a = [1, 0, 2, 3, 0, 4, 5, 6]; int[][] w = [ [1], [2, 3], [4, 5, 6] ]; assert(a.splitter(0).equal(w));
Examples:Basic splitting with characters and numbers and keeping sentinels.import std.algorithm.comparison : equal; import std.typecons : Yes; assert("a|bc|def".splitter!("a == b", Yes.keepSeparators)('|') .equal([ "a", "|", "bc", "|", "def" ])); int[] a = [1, 0, 2, 3, 0, 4, 5, 6]; int[][] w = [ [1], [0], [2, 3], [0], [4, 5, 6] ]; assert(a.splitter!("a == b", Yes.keepSeparators)(0).equal(w));
Examples:Adjacent separators.import std.algorithm.comparison : equal; assert("|ab|".splitter('|').equal([ "", "ab", "" ])); assert("ab".splitter('|').equal([ "ab" ])); assert("a|b||c".splitter('|').equal([ "a", "b", "", "c" ])); assert("hello world".splitter(' ').equal([ "hello", "", "world" ])); auto a = [ 1, 2, 0, 0, 3, 0, 4, 5, 0 ]; auto w = [ [1, 2], [], [3], [4, 5], [] ]; assert(a.splitter(0).equal(w));
Examples:Adjacent separators and keeping sentinels.import std.algorithm.comparison : equal; import std.typecons : Yes; assert("|ab|".splitter!("a == b", Yes.keepSeparators)('|') .equal([ "", "|", "ab", "|", "" ])); assert("ab".splitter!("a == b", Yes.keepSeparators)('|') .equal([ "ab" ])); assert("a|b||c".splitter!("a == b", Yes.keepSeparators)('|') .equal([ "a", "|", "b", "|", "", "|", "c" ])); assert("hello world".splitter!("a == b", Yes.keepSeparators)(' ') .equal([ "hello", " ", "", " ", "world" ])); auto a = [ 1, 2, 0, 0, 3, 0, 4, 5, 0 ]; auto w = [ [1, 2], [0], [], [0], [3], [0], [4, 5], [0], [] ]; assert(a.splitter!("a == b", Yes.keepSeparators)(0).equal(w));
Examples:Empty and separator-only ranges.import std.algorithm.comparison : equal; import std.range : empty; assert("".splitter('|').empty); assert("|".splitter('|').equal([ "", "" ])); assert("||".splitter('|').equal([ "", "", "" ]));
Examples:Empty and separator-only ranges and keeping sentinels.import std.algorithm.comparison : equal; import std.typecons : Yes; import std.range : empty; assert("".splitter!("a == b", Yes.keepSeparators)('|').empty); assert("|".splitter!("a == b", Yes.keepSeparators)('|') .equal([ "", "|", "" ])); assert("||".splitter!("a == b", Yes.keepSeparators)('|') .equal([ "", "|", "", "|", "" ]));
Examples:Use a range for splittingimport std.algorithm.comparison : equal; assert("a=>bc=>def".splitter("=>").equal([ "a", "bc", "def" ])); assert("a|b||c".splitter("||").equal([ "a|b", "c" ])); assert("hello world".splitter(" ").equal([ "hello", "world" ])); int[] a = [ 1, 2, 0, 0, 3, 0, 4, 5, 0 ]; int[][] w = [ [1, 2], [3, 0, 4, 5, 0] ]; assert(a.splitter([0, 0]).equal(w)); a = [ 0, 0 ]; assert(a.splitter([0, 0]).equal([ (int[]).init, (int[]).init ])); a = [ 0, 0, 1 ]; assert(a.splitter([0, 0]).equal([ [], [1] ]));
Examples:Use a range for splittingimport std.algorithm.comparison : equal; import std.typecons : Yes; assert("a=>bc=>def".splitter!("a == b", Yes.keepSeparators)("=>") .equal([ "a", "=>", "bc", "=>", "def" ])); assert("a|b||c".splitter!("a == b", Yes.keepSeparators)("||") .equal([ "a|b", "||", "c" ])); assert("hello world".splitter!("a == b", Yes.keepSeparators)(" ") .equal([ "hello", " ", "world" ])); int[] a = [ 1, 2, 0, 0, 3, 0, 4, 5, 0 ]; int[][] w = [ [1, 2], [0, 0], [3, 0, 4, 5, 0] ]; assert(a.splitter!("a == b", Yes.keepSeparators)([0, 0]).equal(w)); a = [ 0, 0 ]; assert(a.splitter!("a == b", Yes.keepSeparators)([0, 0]) .equal([ (int[]).init, [0, 0], (int[]).init ])); a = [ 0, 0, 1 ]; assert(a.splitter!("a == b", Yes.keepSeparators)([0, 0]) .equal([ [], [0, 0], [1] ]));
Examples:Custom predicate functions.import std.algorithm.comparison : equal; import std.ascii : toLower; assert("abXcdxef".splitter!"a.toLower == b"('x').equal( [ "ab", "cd", "ef" ])); auto w = [ [0], [1], [2] ]; assert(w.splitter!"a.front == b"(1).equal([ [[0]], [[2]] ]));
Examples:Custom predicate functions.import std.algorithm.comparison : equal; import std.typecons : Yes; import std.ascii : toLower; assert("abXcdxef".splitter!("a.toLower == b", Yes.keepSeparators)('x') .equal([ "ab", "X", "cd", "x", "ef" ])); auto w = [ [0], [1], [2] ]; assert(w.splitter!("a.front == b", Yes.keepSeparators)(1) .equal([ [[0]], [[1]], [[2]] ]));
Examples:Use splitter without a separatorimport std.algorithm.comparison : equal; import std.range.primitives : front; assert(equal(splitter!(a => a == '|')("a|bc|def"), [ "a", "bc", "def" ])); assert(equal(splitter!(a => a == ' ')("hello world"), [ "hello", "", "world" ])); int[] a = [ 1, 2, 0, 0, 3, 0, 4, 5, 0 ]; int[][] w = [ [1, 2], [], [3], [4, 5], [] ]; assert(equal(splitter!(a => a == 0)(a), w)); a = [ 0 ]; assert(equal(splitter!(a => a == 0)(a), [ (int[]).init, (int[]).init ])); a = [ 0, 1 ]; assert(equal(splitter!(a => a == 0)(a), [ [], [1] ])); w = [ [0], [1], [2] ]; assert(equal(splitter!(a => a.front == 1)(w), [ [[0]], [[2]] ]));
Examples:Leading separators, trailing separators, or no separators.import std.algorithm.comparison : equal; assert("|ab|".splitter('|').equal([ "", "ab", "" ])); assert("ab".splitter('|').equal([ "ab" ]));
Examples:Leading separators, trailing separators, or no separators.import std.algorithm.comparison : equal; import std.typecons : Yes; assert("|ab|".splitter!("a == b", Yes.keepSeparators)('|') .equal([ "", "|", "ab", "|", "" ])); assert("ab".splitter!("a == b", Yes.keepSeparators)('|') .equal([ "ab" ]));
Examples:Splitter returns bidirectional ranges if the delimiter is a single elementimport std.algorithm.comparison : equal; import std.range : retro; assert("a|bc|def".splitter('|').retro.equal([ "def", "bc", "a" ]));
Examples:Splitter returns bidirectional ranges if the delimiter is a single elementimport std.algorithm.comparison : equal; import std.typecons : Yes; import std.range : retro; assert("a|bc|def".splitter!("a == b", Yes.keepSeparators)('|') .retro.equal([ "def", "|", "bc", "|", "a" ]));
Examples:Splitting by word lazilyimport std.ascii : isWhite; import std.algorithm.comparison : equal; import std.algorithm.iteration : splitter; string str = "Hello World!"; assert(str.splitter!(isWhite).equal(["Hello", "World!"]));
- auto
splitter
(Range)(Ranges
)
if (isSomeString!Range || isRandomAccessRange!Range && hasLength!Range && hasSlicing!Range && !isConvertibleToString!Range && isSomeChar!(ElementEncodingType!Range)); - Lazily splits the character-based range
s
into words, using whitespace as the delimiter.This function is character-range specific and, contrary tosplitter
!(std.uni.isWhite), runs of whitespace will be merged together (no empty tokens will be produced).Parameters:Range s
The character-based range to be split. Must be a string, or a random-access range of character types. Returns:An input range of slices of the original range split by whitespace.Examples:import std.algorithm.comparison : equal; auto a = " a bcd ef gh "; assert(equal(splitter(a), ["a", "bcd", "ef", "gh"][]));
- template
substitute
(substs...) if (substs.length >= 2 && isExpressions!substs)
autosubstitute
(alias pred = (a, b) => a == b, R, Substs...)(Rr
, Substssubsts
)
if (isInputRange!R && (Substs.length >= 2) && !is(CommonType!Substs == void)); - Returns a range with all occurrences of
substs
inr
. replaced with their substitution.Single value replacements ('ö'.substitute
!('ä', 'a', 'ö', 'o', 'ü', 'u)) are supported as well and in Ο(1).Parameters:R r
an input range Value value a single value which can be substituted in Ο(1) Substs substs
a set of replacements/substitutions pred the equality function to test if element(s) are equal to a substitution Returns:a range with the substitutions replaced.See Also:std.array.replace for an eager replace algorithm or std.string.translate, and std.string.tr for string algorithms with translation tables.Examples:import std.algorithm.comparison : equal; // substitute single elements assert("do_it".substitute('_', ' ').equal("do it")); // substitute multiple, single elements assert("do_it".substitute('_', ' ', 'd', 'g', 'i', 't', 't', 'o') .equal("go to")); // substitute subranges assert("do_it".substitute("_", " ", "do", "done") .equal("done it")); // substitution works for any ElementType int[] x = [1, 2, 3]; auto y = x.substitute(1, 0.1); assert(y.equal([0.1, 2, 3])); static assert(is(typeof(y.front) == double)); import std.range : retro; assert([1, 2, 3].substitute(1, 0.1).retro.equal([3, 2, 0.1]));
Examples:Use the faster compile-time overloadimport std.algorithm.comparison : equal; // substitute subranges of a range assert("apple_tree".substitute!("apple", "banana", "tree", "shrub").equal("banana_shrub")); // substitute subranges of a range assert("apple_tree".substitute!('a', 'b', 't', 'f').equal("bpple_free")); // substitute values writeln('a'.substitute!('a', 'b', 't', 'f')); // 'b'
Examples:Multiple substitutesimport std.algorithm.comparison : equal; import std.range.primitives : ElementType; int[3] x = [1, 2, 3]; auto y = x[].substitute(1, 0.1) .substitute(0.1, 0.2); static assert(is(typeof(y.front) == double)); assert(y.equal([0.2, 2, 3])); auto z = "42".substitute('2', '3') .substitute('3', '1'); static assert(is(ElementType!(typeof(z)) == dchar)); assert(equal(z, "41"));
- auto
substitute
(Value)(Valuevalue
)
if (isInputRange!Value || !is(CommonType!(Value, typeof(substs[0])) == void)); - Substitute single values with compile-time substitution mappings.
Complexity Ο(1) due to D's switch guaranteeing Ο(1);
- auto
sum
(R)(Rr
)
if (isInputRange!R && !isInfinite!R && is(typeof(r
.front +r
.front)));
autosum
(R, E)(Rr
, Eseed
)
if (isInputRange!R && !isInfinite!R && is(typeof(seed
=seed
+r
.front))); - Sums elements of
r
, which must be a finite input range. Although conceptuallysum
(r
) is equivalent to fold!((a, b) => a + b)(r, 0),sum
uses specialized algorithms to maximize accuracy, as follows.- If std.range.primitives.ElementType!R is a floating-point
type and R is a
random-access range with
length and slicing, then
sum
uses the pairwise summation algorithm. - If ElementType!R is a floating-point type and R is a
finite input range (but not a random-access range with slicing), then
sum
uses the Kahan summation algorithm. - In all other cases, a simple element by element addition is done.
sum
. Not only will this seed be used as an initial value, but its type will override all the above, and determine the algorithm and precision used for summation. If a seed is not passed, one is created with the value of typeof(r
.front +r
.front)(0), or typeof(r
.front +r
.front).zero if no constructor exists that takes an int. Note that these specialized summing algorithms execute more primitive operations than vanilla summation. Therefore, if in certain cases maximum speed is required at expense of precision, one can use fold!((a, b) => a + b)(r
, 0), which is not specialized for summation.Parameters:E seed
the initial value of the summation R r
a finite input range Returns:The sum of all the elements in the range r.Examples:Dittoimport std.range; //simple integral sumation writeln(sum([1, 2, 3, 4])); // 10 //with integral promotion writeln(sum([false, true, true, false, true])); // 3 writeln(sum(ubyte.max.repeat(100))); // 25500 //The result may overflow writeln(uint.max.repeat(3).sum()); // 4294967293U //But a seed can be used to change the sumation primitive writeln(uint.max.repeat(3).sum(ulong.init)); // 12884901885UL //Floating point sumation writeln(sum([1.0, 2.0, 3.0, 4.0])); // 10 //Floating point operations have double precision minimum static assert(is(typeof(sum([1F, 2F, 3F, 4F])) == double)); writeln(sum([1F, 2, 3, 4])); // 10 //Force pair-wise floating point sumation on large integers import std.math.operations : isClose; assert(iota(ulong.max / 2, ulong.max / 2 + 4096).sum(0.0) .isClose((ulong.max / 2) * 4096.0 + 4096^^2 / 2));
- If std.range.primitives.ElementType!R is a floating-point
type and R is a
random-access range with
length and slicing, then
- T
mean
(T = double, R)(Rr
)
if (isInputRange!R && isNumeric!(ElementType!R) && !isInfinite!R);
automean
(R, T)(Rr
, Tseed
)
if (isInputRange!R && !isNumeric!(ElementType!R) && is(typeof(r
.front +seed
)) && is(typeof(r
.front / size_t(1))) && !isInfinite!R); - Finds the mean (colloquially known as the average) of a range.For built-in numerical types, accurate Knuth & Welford mean calculation is used. For user-defined types, element by element summation is used. Additionally an extra parameter
seed
is needed in order to correctly seed the summation with the equivalent to 0. The first overload of this function will return T.init if the range is empty. However, the second overload will returnseed
on empty ranges. This function is Ο(r.length).Parameters:T The type of the return value. R r
An input range T seed
For user defined types. Should be equivalent to 0. Returns:The mean ofr
whenr
is non-empty.Examples:import std.math.operations : isClose; import std.math.traits : isNaN; static immutable arr1 = [1, 2, 3]; static immutable arr2 = [1.5, 2.5, 12.5]; assert(arr1.mean.isClose(2)); assert(arr2.mean.isClose(5.5)); assert(arr1[0 .. 0].mean.isNaN);
- auto
uniq
(alias pred = "a == b", Range)(Ranger
)
if (isInputRange!Range && is(typeof(binaryFun!pred(r
.front,r
.front)) == bool)); - Lazily iterates unique consecutive elements of the given range (functionality akin to the uniq system utility). Equivalence of elements is assessed by using the predicate pred, by default "a == b". The predicate is passed to std.functional.binaryFun, and can either accept a string, or any callable that can be executed via pred(element, element). If the given range is bidirectional,
uniq
also yields a bidirectional range.Parameters:pred Predicate for determining equivalence between range elements. Range r
An input range of elements to filter. Returns:An input range of consecutively unique elements in the original range. Ifr
is also a forward range or bidirectional range, the returned range will be likewise.Examples:import std.algorithm.comparison : equal; import std.algorithm.mutation : copy; int[] arr = [ 1, 2, 2, 2, 2, 3, 4, 4, 4, 5 ]; assert(equal(uniq(arr), [ 1, 2, 3, 4, 5 ][])); // Filter duplicates in-place using copy arr.length -= arr.uniq().copy(arr).length; writeln(arr); // [1, 2, 3, 4, 5] // Note that uniqueness is only determined consecutively; duplicated // elements separated by an intervening different element will not be // eliminated: assert(equal(uniq([ 1, 1, 2, 1, 1, 3, 1]), [1, 2, 1, 3, 1]));
- Permutations!Range
permutations
(Range)(Ranger
)
if (isRandomAccessRange!Range && hasLength!Range);
structPermutations
(Range) if (isRandomAccessRange!Range && hasLength!Range); - Lazily computes all permutations of
r
using Heap's algorithm.Parameters:Range the range type Range r
the random access range to find the permutations for. Returns:See Also:Examples:import std.algorithm.comparison : equal; import std.range : iota; assert(equal!equal(iota(3).permutations, [[0, 1, 2], [1, 0, 2], [2, 0, 1], [0, 2, 1], [1, 2, 0], [2, 1, 0]]));