Report a bug
If you spot a problem with this page, click here to create a Bugzilla issue.
Improve this page
Quickly fork, edit online, and submit a pull request for this page. Requires a signed-in GitHub account. This works well for small changes. If you'd like to make larger changes you may want to consider using a local clone.


Defines TemplateDeclaration, TemplateInstance and a few utilities
This modules holds the two main template types: TemplateDeclaration, which is the user-provided declaration of a template, and TemplateInstance, which is an instance of a TemplateDeclaration with specific arguments.

Template Parameter Additionally, the classes for template parameters are defined in this module. The base class, TemplateParameter, is inherited by: - TemplateTypeParameter - TemplateThisParameter - TemplateValueParameter - TemplateAliasParameter - TemplateTupleParameter

Templates semantic The start of the template instantiation process looks like this: - A TypeInstance or TypeIdentifier is encountered. TypeInstance have a bang (e.g. Foo!(arg)) while TypeIdentifier don't. - A TemplateInstance is instantiated - Semantic is run on the TemplateInstance (see dmd.dsymbolsem) - The TemplateInstance search for its TemplateDeclaration, runs semantic on the template arguments and deduce the best match among the possible overloads. - The TemplateInstance search for existing instances with the same arguments, and uses it if found. - Otherwise, the rest of semantic is run on the TemplateInstance.


Source dtemplate.d

pure nothrow @nogc inout(Expression) isExpression(inout RootObject o);
These functions substitute for dynamic_cast. dynamic_cast does not work on earlier versions of gcc.
pure nothrow @nogc bool isError(const RootObject o);
Is this Object an error?
pure nothrow @nogc bool arrayObjectIsError(const Objects* args);
Are any of the Objects an error?
pure nothrow @nogc inout(Type) getType(inout RootObject o);
Try to get arg as a type.
class TemplateDeclaration: dmd.dsymbol.ScopeDsymbol;
[mixin] template Identifier (parameters) [Constraint]
int inuse;
for recursive expansion detection
bool overloadInsert(Dsymbol s);
Overload existing TemplateDeclaration 'this' with the new one 's'. Return true if successful; i.e. no conflict.
const(char)* toCharsNoConstraints();
Similar to toChars, but does not print the template constraints
bool evaluateConstraint(TemplateInstance ti, Scope* sc, Scope* paramscope, Objects* dedargs, FuncDeclaration fd);
Check to see if constraint is satisfied.
const(char)* getConstraintEvalError(ref const(char)* tip);
Destructively get the error message from the last constraint evaluation
const(char)* tip tip to show after printing all overloads
Scope* scopeForTemplateParameters(TemplateInstance ti, Scope* sc);
Create a scope for the parameters of the TemplateInstance ti in the parent scope sc from the ScopeDsymbol paramsym.
If paramsym is null a new ScopeDsymbol is used in place of paramsym.
TemplateInstance ti the TemplateInstance whose parameters to generate the scope for.
Scope* sc the parent scope of ti
a scope for the parameters of ti
MATCH matchWithInstance(Scope* sc, TemplateInstance ti, Objects* dedtypes, Expressions* fargs, int flag);
Given that ti is an instance of this TemplateDeclaration, deduce the types of the parameters to this, and store those deduced types in dedtypes[].

Input flag 1: don't do semantic() because of dummy types 2: don't change types in matchArg()

Output dedtypes deduced arguments Return match level.

MATCH leastAsSpecialized(Scope* sc, TemplateDeclaration td2, Expressions* fargs);
Determine partial specialization order of 'this' vs td2.
match this is at least as specialized as td2 0 td2 is more specialized than this
MATCH deduceFunctionTemplateMatch(TemplateInstance ti, Scope* sc, ref FuncDeclaration fd, Type tthis, Expressions* fargs);
Match function arguments against a specific template function.

Input ti sc instantiation scope fd tthis 'this' argument if !NULL fargs arguments to function

Output fd Partially instantiated function declaration ti.tdtypes Expression/Type deduced template arguments

match level bit 0-3 Match template parameters by inferred template arguments bit 4-7 Match template parameters by initial template arguments
RootObject declareParameter(Scope* sc, TemplateParameter tp, RootObject o);
Declare template parameter tp with value o, and install it in the scope sc.
FuncDeclaration doHeaderInstantiation(TemplateInstance ti, Scope* sc2, FuncDeclaration fd, Type tthis, Expressions* fargs);
Limited function template instantiation for using fd.leastAsSpecialized()
TemplateInstance findExistingInstance(TemplateInstance tithis, Expressions* fargs);
Given a new instance tithis of this TemplateDeclaration, see if there already exists an instance. If so, return that existing instance.
TemplateInstance addInstance(TemplateInstance ti);
Add instance ti to TemplateDeclaration's table of instances. Return a handle we can use to later remove it if it fails instantiation.
void removeInstance(TemplateInstance ti);
Remove TemplateInstance from table of instances.

Input handle returned by addInstance()

TemplateTupleParameter isVariadic();
Check if the last template parameter is a tuple one, and returns it if so, else returns null.
The last template parameter if it's a TemplateTupleParameter
const bool isOverloadable();
We can overload templates.
void functionResolve(ref MatchAccumulator m, Dsymbol dstart, Loc loc, Scope* sc, Objects* tiargs, Type tthis, Expressions* fargs, const(char)** pMessage = null);
Given function arguments, figure out which template function to expand, and return matching result.
MatchAccumulator m matching result
Dsymbol dstart the root of overloaded function templates
Loc loc instantiation location
Scope* sc instantiation scope
Objects* tiargs initial list of template arguments
Type tthis if !NULL, the 'this' pointer argument
Expressions* fargs arguments to function
const(char)** pMessage address to store error message, or null
bool reliesOnTident(Type t, TemplateParameters* tparams, size_t iStart = 0);
Check whether the type t representation relies on one or more the template parameters.
Type t Tested type, if null, returns false.
TemplateParameters* tparams Template parameters.
size_t iStart Start index of tparams to limit the tested parameters. If it's nonzero, tparams[0..iStart] will be excluded from the test target.
abstract class TemplateParameter: dmd.ast_node.ASTNode;
class TemplateTypeParameter: dmd.dtemplate.TemplateParameter;

Syntax ident : specType = defaultType

class TemplateThisParameter: dmd.dtemplate.TemplateTypeParameter;

Syntax this ident : specType = defaultType

class TemplateValueParameter: dmd.dtemplate.TemplateParameter;

Syntax valType ident : specValue = defaultValue

class TemplateAliasParameter: dmd.dtemplate.TemplateParameter;

Syntax specType ident : specAlias = defaultAlias

class TemplateTupleParameter: dmd.dtemplate.TemplateParameter;

Syntax ident ...

class TemplateInstance: dmd.dsymbol.ScopeDsymbol;

Given foo!(args) => name = foo tiargs = args

this(ref const Loc loc, TemplateDeclaration td, Objects* tiargs);
This constructor is only called when we figured out which function template to instantiate.
final void printInstantiationTrace();
Given an error instantiating the TemplateInstance, give the nested TemplateInstance instantiations that got us here. Those are a list threaded into the nested scopes.
final Identifier getIdent();
Lazily generate identifier for template instance. This is because 75% of the ident's are never needed.
final bool equalsx(TemplateInstance ti);
Compare proposed template instantiation with existing template instantiation. Note that this is not commutative because of the auto ref check.
TemplateInstance ti existing template instantiation
true for match
final bool needsCodegen();
Returns true if this is not instantiated in non-root module, and is a part of non-speculative instantiatiation.

Note minst does not stabilize until semantic analysis is completed, so don't call this function during semantic analysis to return precise result.

final bool findTempDecl(Scope* sc, WithScopeSymbol* pwithsym);
Find template declaration corresponding to template instance.
false if finding fails.

Note This function is reentrant against error occurrence. If returns false, any members of this object won't be modified, and repetition call will reproduce same error.

final bool updateTempDecl(Scope* sc, Dsymbol s);
Confirm s is a valid template, then store it.

Input sc s candidate symbol of template. It may be: TemplateDeclaration FuncDeclaration with findTemplateDeclRoot() != NULL OverloadSet which contains candidates

true if updating succeeds.
static bool semanticTiargs(ref const Loc loc, Scope* sc, Objects* tiargs, int flags);
Run semantic of tiargs as arguments of template.

Input loc sc tiargs array of template arguments flags 1: replace const variables with their initializers 2: don't devolve Parameter to Type

false if one or more arguments have errors.
final bool semanticTiargs(Scope* sc);
Run semantic on the elements of tiargs.

Input sc

false if one or more arguments have errors.

Note This function is reentrant against error occurrence. If returns false, all elements of tiargs won't be modified.

final bool needsTypeInference(Scope* sc, int flag = 0);
Determine if template instance is really a template function, and that template function needs to infer types from the function arguments.
Like findBestMatch, iterate possible template candidates, but just looks only the necessity of type inference.
final bool hasNestedArgs(Objects* args, bool isstatic);
Determines if a TemplateInstance will need a nested generation of the TemplateDeclaration. Sets enclosing property if so, and returns != 0;
final Dsymbols* appendToModuleMember();
Append 'this' to the specific module members[]
final void declareParameters(Scope* sc);
Declare parameters of template instance, initialize them with the template instance arguments.
final Identifier genIdent(Objects* args);
This instance needs an identifier for name mangling purposes. Create one by taking the template declaration name and adding the type signature for it.
void unSpeculative(Scope* sc, RootObject o);
IsExpression can evaluate the specified type speculatively, and even if it instantiates any symbols, they are normally unnecessary for the final executable. However, if those symbols leak to the actual code, compiler should remark them as non-speculative to generate their code and link to the final executable.
bool definitelyValueParameter(Expression e);
Return true if e could be valid only as a template value parameter. Return false if it might be an alias or tuple. (Note that even in this case, it could still turn out to be a value).
class TemplateMixin: dmd.dtemplate.TemplateInstance;

Syntax mixin MixinTemplateName [TemplateArguments] [Identifier];

struct TemplateInstanceBox;
This struct is needed for TemplateInstance to be the key in an associative array. Fixing and would make it unnecessary.
MATCH matchArg(TemplateParameter tp, Loc instLoc, Scope* sc, Objects* tiargs, size_t i, TemplateParameters* parameters, Objects* dedtypes, Declaration* psparam);
Match to a particular TemplateParameter.

Input instLoc location that the template is instantiated. tiargs[] actual arguments to template instance i i'th argument parameters[] template parameters dedtypes[] deduced arguments to template instance *psparam set to symbol declared and initialized to dedtypes[i]